In general differential calculus, we have learned the definitions of function continuity, such as functions of class \(C^0\) and \(C^2\). For most cases, we only take them for granted as for example, we have memorized the formulations of Green identities while ignored the conditions on function's continuities. Although this is helpful for a "vivid" and "naive" understanding, mathematical rigorousness and structural beauties are lost. Therefore, this article summarizes several definitions of function continuities and clarifies their imbedding relationships.

Definition (Continuous function space \(C^m(\Omega)\) with order \(m\)) For non-negative integer \(m\), \(C^m(\Omega)\) is the vector space consisting of all functions \(\phi\) with their partial derivatives \(D^{\alpha} \phi\) of orders \(0 \leq \abs{\alpha} \leq m\) continuous on an open set \(\Omega\).

Because the domain \(\Omega\) is open, functions in \(C^m(\Omega)\) may not be bounded, which seldom appear in engineering cases. Therefore, the spaces of bounded continuous functions \(C_B^m(\Omega)\) are introduced as below, which are subspaces of \(C^m(\Omega)\).

Definition (Bounded continuous function spaces \(C_B^m(\Omega)\)) \(C_B^m(\Omega)\) is a subspace of \(C^m(\Omega)\) and for all \(\phi \in C_B^m(\Omega)\), its partial derivatives \(D^{\alpha} \phi\) of orders \(0 \leq \abs{\alpha} \leq m\) are bounded on \(\Omega\). \(C_B^m(\Omega)\) is a Banach space with the norm defined as $$ \norm{\phi; C_B^m(\Omega)} = \max_{0 \leq \abs{\alpha} \leq m} \sup_{x \in \Omega} \abs{D^{\alpha} \phi(x)} $$

Because the domain \(\Omega\) is open in \(\mathbb{R}^n\), we have the intention to continuously extend the function to domain boundary \(\pdiff\Omega\) (note: This is very important because it determines for example whether our solution to a PDE can be extended continuously to match the given boundary condition). Then comes the definition of bounded and uniformly continuous function spaces \(C^{m}(\overline{\Omega})\).

Definition (Spaces of bounded and uniformly continuous functions \(C^{m}(\overline{\Omega})\)) \(C^{m}(\overline{\Omega})\) is a subspace of \(C_B^{m}(\Omega)\) and for all \(\phi \in C^{m}(\overline{\Omega})\), its partial derivatives \(D^{\alpha} \phi\) of orders \(0 \leq \abs{\alpha} \leq m\) are uniformly continuous on \(\Omega\). \(C^{m}(\overline{\Omega})\) is a Banach space with the norm defined as $$ \norm{\phi; C^m(\overline{\Omega})} = \max_{0 \leq \abs{\alpha} \leq m} \sup_{x \in \Omega} \abs{D^{\alpha} \phi(x)} $$

Remark

  1. A bounded and uniformly continuous function has a unique, bounded and continuous extension to \(\overline{\Omega}\).
  2. Uniform continuity can be understood as: a change in the function value anywhere in the function's range can control the change of independent variable uniformly, i.e. there is a global common bound on it. At the first glance, we tend to say that if a function is uniformly continuous, it is also bounded. However, this is not always true and we leave this question to future post.

Finally, we have the definition of Hölder and Lipschitz continuous function spaces.

Definition (Spaces of Hölder continuous functions \(C^{m,\lambda}(\overline{\Omega})\)) \(C^{m,\lambda}(\overline{\Omega})\) is a subspace of \(C^{m}(\overline{\Omega})\) and for all \(\phi \in C^{m,\lambda}(\overline{\Omega})\), its partial derivatives \(D^{\alpha} \phi\) satisfies a Hölder condition of exponent \(\lambda \in (0, 1]\), i.e. there exists a constant \(K\) such that

$$ \abs{D^{\alpha} \phi(x) - D^{\alpha} \phi(y)} \leq K\abs{x - y}^{\lambda} \quad (x, y \in \Omega) $$

When the Hölder exponent \(\lambda\) is 1, functions in the space \(C^{m,1}(\overline{\Omega})\) are Lipschitz continuous. \(C^{m,\lambda}(\overline{\Omega})\) is a Banach space with the norm defined as $$ \norm{\phi; C^{m,\lambda}(\overline{\Omega})} = \abs{\phi; C^m(\overline{\Omega})} + \max_{0 \leq \abs{\alpha} \leq m} \sup_{\overset{x, y \in \Omega}{x \neq y}} \frac{\abs{D^{\alpha} \phi(x) - D^{\alpha} \phi(y)}}{\abs{x - y}^{\lambda}} $$

Next, we'll show the imbedding chain of the above continuous function spaces.

Definition (Imbeddings) Let \(X\) and \(Y\) be normed spaces. \(X\) is imbedded in \(Y\), written as \(X \rightarrow Y\), if \(X\) is a vector subspace of \(Y\) and the identity operator \(I: X \longrightarrow Y\) is continuous for all \(x \in X\).

Remark The continuous identity operator implies that the norm of \(x \in X\) can be used to control the norm of \(y = I(x) \in Y\) with a constant \(M\),

$$ \norm{y; Y} \leq M \norm{x; X} \quad (\forall x \in X) $$

With the above defined norms for various continuous function spaces, the whole chain of imbeddings is summarized as follows when \(\Omega\) is convex:

\begin{align*} & C^{\infty} (\overline{\Omega}) \rightarrow \cdots C^{m+1}(\overline{\Omega}) \rightarrow C^{m,1}(\overline{\Omega}) \rightarrow C^{m,\lambda}(\overline\Omega) \\ & \rightarrow C^{m, v}(\overline\Omega) \rightarrow C^{m}(\overline\Omega) \rightarrow \cdots C^0(\overline{\Omega}) \end{align*}

where \(0 < v < \lambda < 1\).

Summary of continuous function spaces的更多相关文章

  1. Concept of function continuity in topology

    Understanding of continuity definition in topology When we learn calculus in university as freshmen, ...

  2. Constructing continuous functions

    This post summarises different ways of constructing continuous functions, which are introduced in Se ...

  3. 神经网络可以拟合任意函数的视觉证明A visual proof that neural nets can compute any function

    One of the most striking facts about neural networks is that they can compute any function at all. T ...

  4. (zhuan) Deep Deterministic Policy Gradients in TensorFlow

          Deep Deterministic Policy Gradients in TensorFlow AUG 21, 2016 This blog from: http://pemami49 ...

  5. <<Differential Geometry of Curves and Surfaces>>笔记

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

  6. Kernel Functions for Machine Learning Applications

    In recent years, Kernel methods have received major attention, particularly due to the increased pop ...

  7. MOOCULUS微积分-2: 数列与级数学习笔记 3. Convergence tests

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  8. [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答

    1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...

  9. 39. Volume Rendering Techniques

    Milan Ikits University of Utah Joe Kniss University of Utah Aaron Lefohn University of California, D ...

随机推荐

  1. 题解-bzoj4320 Homework

    Problem bzoj4320 Solution 前置技能:分块+线段树+卡常+一点小小的数学知识 考试时A的 这种题无论怎么处理总有瓶颈,套路分块,设\(k\)以下的插入时直接暴力预处理,查询时直 ...

  2. noi.ac 集合

    A.集合 --- 题面 不知道有没有用的传送门[滑稽 就是给你一个 包含 1~n 的集合,让你求它的大小为 k 的子集 s 的 \(T^{min(s)}\) 的期望值, T 为给出值, min(s) ...

  3. mysql 定时备份bat脚本 ,方便小型服务简单快速备份mysql

    mysql定时备份bat脚本 echo 数据库为用户名为root 密码为root 数据库名为kdykt echo mysqldump 命令如果没有配置环境变量要在bin目录下执行 set " ...

  4. ASP.NET MVC5高级编程 之 视图

    1.1理解视图约定 当创建一个项目模版时,可以注意到,项目以一种非常具体的方式包含了一个结构化的Views目录.在每一个控制器的View文件夹中,每一个操作方法都有一个同名的视图文件与其对应.这就提供 ...

  5. 连接mysql(建表和删表)

    from sqlalchemy.ext.declarative import declarative_base##拿到父类from sqlalchemy import Column##拿到字段from ...

  6. 帮你彻底搞懂JS中的prototype、__proto__与constructor(图解)

    作为一名前端工程师,必须搞懂JS中的prototype.__proto__与constructor属性,相信很多初学者对这些属性存在许多困惑,容易把它们混淆,本文旨在帮助大家理清它们之间的关系并彻底搞 ...

  7. Python traceback的优雅处理

    刚接触Python的时候,简单的异常处理已经可以帮助我们解决大多数问题,但是随着逐渐地深入,我们会发现有很多情况下简单的异常处理已经无法解决问题了,如下代码,单纯的打印异常所能提供的信息会非常有限. ...

  8. javaweb web.xml文件详解

    web.xml文件详解 前言:一般的web工程中都会用到web.xml,web.xml主要用来配置,可以方便的开发web工程.web.xml主要用来配置Filter.Listener.Servlet等 ...

  9. Oracle SQL高级编程——分析函数(窗口函数)全面讲解

    Oracle SQL高级编程--分析函数(窗口函数)全面讲解 注:本文来源于:<Oracle SQL高级编程--分析函数(窗口函数)全面讲解> 概述 分析函数是以一定的方法在一个与当前行相 ...

  10. 巧用&&和|| 让逻辑代码更简洁,逼格看起来更高一点(玩笑脸)

    通常当我们有一个需求 需要用到很多if else 进行条件筛选,例如: let level = 0; if(score > 12){ level = 4; } else if(score > ...