In general differential calculus, we have learned the definitions of function continuity, such as functions of class \(C^0\) and \(C^2\). For most cases, we only take them for granted as for example, we have memorized the formulations of Green identities while ignored the conditions on function's continuities. Although this is helpful for a "vivid" and "naive" understanding, mathematical rigorousness and structural beauties are lost. Therefore, this article summarizes several definitions of function continuities and clarifies their imbedding relationships.

Definition (Continuous function space \(C^m(\Omega)\) with order \(m\)) For non-negative integer \(m\), \(C^m(\Omega)\) is the vector space consisting of all functions \(\phi\) with their partial derivatives \(D^{\alpha} \phi\) of orders \(0 \leq \abs{\alpha} \leq m\) continuous on an open set \(\Omega\).

Because the domain \(\Omega\) is open, functions in \(C^m(\Omega)\) may not be bounded, which seldom appear in engineering cases. Therefore, the spaces of bounded continuous functions \(C_B^m(\Omega)\) are introduced as below, which are subspaces of \(C^m(\Omega)\).

Definition (Bounded continuous function spaces \(C_B^m(\Omega)\)) \(C_B^m(\Omega)\) is a subspace of \(C^m(\Omega)\) and for all \(\phi \in C_B^m(\Omega)\), its partial derivatives \(D^{\alpha} \phi\) of orders \(0 \leq \abs{\alpha} \leq m\) are bounded on \(\Omega\). \(C_B^m(\Omega)\) is a Banach space with the norm defined as $$ \norm{\phi; C_B^m(\Omega)} = \max_{0 \leq \abs{\alpha} \leq m} \sup_{x \in \Omega} \abs{D^{\alpha} \phi(x)} $$

Because the domain \(\Omega\) is open in \(\mathbb{R}^n\), we have the intention to continuously extend the function to domain boundary \(\pdiff\Omega\) (note: This is very important because it determines for example whether our solution to a PDE can be extended continuously to match the given boundary condition). Then comes the definition of bounded and uniformly continuous function spaces \(C^{m}(\overline{\Omega})\).

Definition (Spaces of bounded and uniformly continuous functions \(C^{m}(\overline{\Omega})\)) \(C^{m}(\overline{\Omega})\) is a subspace of \(C_B^{m}(\Omega)\) and for all \(\phi \in C^{m}(\overline{\Omega})\), its partial derivatives \(D^{\alpha} \phi\) of orders \(0 \leq \abs{\alpha} \leq m\) are uniformly continuous on \(\Omega\). \(C^{m}(\overline{\Omega})\) is a Banach space with the norm defined as $$ \norm{\phi; C^m(\overline{\Omega})} = \max_{0 \leq \abs{\alpha} \leq m} \sup_{x \in \Omega} \abs{D^{\alpha} \phi(x)} $$

Remark

  1. A bounded and uniformly continuous function has a unique, bounded and continuous extension to \(\overline{\Omega}\).
  2. Uniform continuity can be understood as: a change in the function value anywhere in the function's range can control the change of independent variable uniformly, i.e. there is a global common bound on it. At the first glance, we tend to say that if a function is uniformly continuous, it is also bounded. However, this is not always true and we leave this question to future post.

Finally, we have the definition of Hölder and Lipschitz continuous function spaces.

Definition (Spaces of Hölder continuous functions \(C^{m,\lambda}(\overline{\Omega})\)) \(C^{m,\lambda}(\overline{\Omega})\) is a subspace of \(C^{m}(\overline{\Omega})\) and for all \(\phi \in C^{m,\lambda}(\overline{\Omega})\), its partial derivatives \(D^{\alpha} \phi\) satisfies a Hölder condition of exponent \(\lambda \in (0, 1]\), i.e. there exists a constant \(K\) such that

$$ \abs{D^{\alpha} \phi(x) - D^{\alpha} \phi(y)} \leq K\abs{x - y}^{\lambda} \quad (x, y \in \Omega) $$

When the Hölder exponent \(\lambda\) is 1, functions in the space \(C^{m,1}(\overline{\Omega})\) are Lipschitz continuous. \(C^{m,\lambda}(\overline{\Omega})\) is a Banach space with the norm defined as $$ \norm{\phi; C^{m,\lambda}(\overline{\Omega})} = \abs{\phi; C^m(\overline{\Omega})} + \max_{0 \leq \abs{\alpha} \leq m} \sup_{\overset{x, y \in \Omega}{x \neq y}} \frac{\abs{D^{\alpha} \phi(x) - D^{\alpha} \phi(y)}}{\abs{x - y}^{\lambda}} $$

Next, we'll show the imbedding chain of the above continuous function spaces.

Definition (Imbeddings) Let \(X\) and \(Y\) be normed spaces. \(X\) is imbedded in \(Y\), written as \(X \rightarrow Y\), if \(X\) is a vector subspace of \(Y\) and the identity operator \(I: X \longrightarrow Y\) is continuous for all \(x \in X\).

Remark The continuous identity operator implies that the norm of \(x \in X\) can be used to control the norm of \(y = I(x) \in Y\) with a constant \(M\),

$$ \norm{y; Y} \leq M \norm{x; X} \quad (\forall x \in X) $$

With the above defined norms for various continuous function spaces, the whole chain of imbeddings is summarized as follows when \(\Omega\) is convex:

\begin{align*} & C^{\infty} (\overline{\Omega}) \rightarrow \cdots C^{m+1}(\overline{\Omega}) \rightarrow C^{m,1}(\overline{\Omega}) \rightarrow C^{m,\lambda}(\overline\Omega) \\ & \rightarrow C^{m, v}(\overline\Omega) \rightarrow C^{m}(\overline\Omega) \rightarrow \cdots C^0(\overline{\Omega}) \end{align*}

where \(0 < v < \lambda < 1\).

Summary of continuous function spaces的更多相关文章

  1. Concept of function continuity in topology

    Understanding of continuity definition in topology When we learn calculus in university as freshmen, ...

  2. Constructing continuous functions

    This post summarises different ways of constructing continuous functions, which are introduced in Se ...

  3. 神经网络可以拟合任意函数的视觉证明A visual proof that neural nets can compute any function

    One of the most striking facts about neural networks is that they can compute any function at all. T ...

  4. (zhuan) Deep Deterministic Policy Gradients in TensorFlow

          Deep Deterministic Policy Gradients in TensorFlow AUG 21, 2016 This blog from: http://pemami49 ...

  5. <<Differential Geometry of Curves and Surfaces>>笔记

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

  6. Kernel Functions for Machine Learning Applications

    In recent years, Kernel methods have received major attention, particularly due to the increased pop ...

  7. MOOCULUS微积分-2: 数列与级数学习笔记 3. Convergence tests

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  8. [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答

    1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...

  9. 39. Volume Rendering Techniques

    Milan Ikits University of Utah Joe Kniss University of Utah Aaron Lefohn University of California, D ...

随机推荐

  1. 链接器link.exe 编译器cl.exe 资源编译器rc.exe

    原文地址:https://blog.csdn.net/biggbang/article/details/24433065 1.cl.exe文件是Visual C\C++的编译器,它将程序源代码文件编译 ...

  2. JAVA中获取键盘输入的方法总结

    Java程序开发过程中,需要从键盘获取输入值是常有的事,但Java它偏偏就没有像c语言给我们提供的scanf(),C++给我们提供的cin()获取键盘输入值的现成函数!下面介绍三种解决方法: 方法一: ...

  3. Windows中查看端口占用及关闭对应进程

    开始--运行--cmd 进入命令提示符 输入netstat -ano 即可看到所有连接的PID,之后在任务管理器(右键电脑屏幕的状态栏即可找到)中找到这个PID所对应的程序.如果任务管理器中没有PID ...

  4. Java RMI与RPC的区别

    转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/6542811.html  一:RPC 远程过程调用 RPC(Remote Procedure Call Prot ...

  5. IPNS节点ID

    IPNS节点ID访问网站:     当我们修改网站内容重新添加到ipfs时,hash会发生变化,当我们网站更新时,我们可以将网站发布到IPNS,在IPNS中,允许我们节点的域名空间中引用一个IPFS ...

  6. 调整linux进程优先级

    使用环境 当服务器资源比较紧张的时候,可以通过调整优先级来优先处理某个进程的请求 查看进行优先级(top) 优先级由 -20~19这个范围来表示优先级大小,数值越小,优先级越高, 设置方法: 使用re ...

  7. LuoGu P2783 有机化学之神偶尔会做作弊

    题目传送门 人生第一道黑题呢,虽然这题是黑题中的水题并且我调了一整节课,但是我还是很兴奋啊.毕竟人生第一道黑题啊 这个题根据题意,先把整个图进行tarjan缩点,建出一棵树,对于每一组询问,两点之间的 ...

  8. C# Excel行高、列宽、合并单元格、单元格边框线、冻结

    private _Workbook _workBook = null;private Worksheet _workSheet = null;private Excel.Application _ex ...

  9. robot启动

    可以这句写入到bat文件里 pythonw.exe -c "from robotide import main; main()"

  10. iOS 高德地图轨迹回放的 思路, 及方法

    // 开始,公司要求制作一段跑步轨迹 在地图上的 动画回放, 传入一段经纬度, 开始一想,这不是很简单吗, 高德地图有可以把经纬度转换成坐标点的方法 /** * @brief 将经纬度转换为指定vie ...