In general differential calculus, we have learned the definitions of function continuity, such as functions of class \(C^0\) and \(C^2\). For most cases, we only take them for granted as for example, we have memorized the formulations of Green identities while ignored the conditions on function's continuities. Although this is helpful for a "vivid" and "naive" understanding, mathematical rigorousness and structural beauties are lost. Therefore, this article summarizes several definitions of function continuities and clarifies their imbedding relationships.

Definition (Continuous function space \(C^m(\Omega)\) with order \(m\)) For non-negative integer \(m\), \(C^m(\Omega)\) is the vector space consisting of all functions \(\phi\) with their partial derivatives \(D^{\alpha} \phi\) of orders \(0 \leq \abs{\alpha} \leq m\) continuous on an open set \(\Omega\).

Because the domain \(\Omega\) is open, functions in \(C^m(\Omega)\) may not be bounded, which seldom appear in engineering cases. Therefore, the spaces of bounded continuous functions \(C_B^m(\Omega)\) are introduced as below, which are subspaces of \(C^m(\Omega)\).

Definition (Bounded continuous function spaces \(C_B^m(\Omega)\)) \(C_B^m(\Omega)\) is a subspace of \(C^m(\Omega)\) and for all \(\phi \in C_B^m(\Omega)\), its partial derivatives \(D^{\alpha} \phi\) of orders \(0 \leq \abs{\alpha} \leq m\) are bounded on \(\Omega\). \(C_B^m(\Omega)\) is a Banach space with the norm defined as $$ \norm{\phi; C_B^m(\Omega)} = \max_{0 \leq \abs{\alpha} \leq m} \sup_{x \in \Omega} \abs{D^{\alpha} \phi(x)} $$

Because the domain \(\Omega\) is open in \(\mathbb{R}^n\), we have the intention to continuously extend the function to domain boundary \(\pdiff\Omega\) (note: This is very important because it determines for example whether our solution to a PDE can be extended continuously to match the given boundary condition). Then comes the definition of bounded and uniformly continuous function spaces \(C^{m}(\overline{\Omega})\).

Definition (Spaces of bounded and uniformly continuous functions \(C^{m}(\overline{\Omega})\)) \(C^{m}(\overline{\Omega})\) is a subspace of \(C_B^{m}(\Omega)\) and for all \(\phi \in C^{m}(\overline{\Omega})\), its partial derivatives \(D^{\alpha} \phi\) of orders \(0 \leq \abs{\alpha} \leq m\) are uniformly continuous on \(\Omega\). \(C^{m}(\overline{\Omega})\) is a Banach space with the norm defined as $$ \norm{\phi; C^m(\overline{\Omega})} = \max_{0 \leq \abs{\alpha} \leq m} \sup_{x \in \Omega} \abs{D^{\alpha} \phi(x)} $$

Remark

  1. A bounded and uniformly continuous function has a unique, bounded and continuous extension to \(\overline{\Omega}\).
  2. Uniform continuity can be understood as: a change in the function value anywhere in the function's range can control the change of independent variable uniformly, i.e. there is a global common bound on it. At the first glance, we tend to say that if a function is uniformly continuous, it is also bounded. However, this is not always true and we leave this question to future post.

Finally, we have the definition of Hölder and Lipschitz continuous function spaces.

Definition (Spaces of Hölder continuous functions \(C^{m,\lambda}(\overline{\Omega})\)) \(C^{m,\lambda}(\overline{\Omega})\) is a subspace of \(C^{m}(\overline{\Omega})\) and for all \(\phi \in C^{m,\lambda}(\overline{\Omega})\), its partial derivatives \(D^{\alpha} \phi\) satisfies a Hölder condition of exponent \(\lambda \in (0, 1]\), i.e. there exists a constant \(K\) such that

$$ \abs{D^{\alpha} \phi(x) - D^{\alpha} \phi(y)} \leq K\abs{x - y}^{\lambda} \quad (x, y \in \Omega) $$

When the Hölder exponent \(\lambda\) is 1, functions in the space \(C^{m,1}(\overline{\Omega})\) are Lipschitz continuous. \(C^{m,\lambda}(\overline{\Omega})\) is a Banach space with the norm defined as $$ \norm{\phi; C^{m,\lambda}(\overline{\Omega})} = \abs{\phi; C^m(\overline{\Omega})} + \max_{0 \leq \abs{\alpha} \leq m} \sup_{\overset{x, y \in \Omega}{x \neq y}} \frac{\abs{D^{\alpha} \phi(x) - D^{\alpha} \phi(y)}}{\abs{x - y}^{\lambda}} $$

Next, we'll show the imbedding chain of the above continuous function spaces.

Definition (Imbeddings) Let \(X\) and \(Y\) be normed spaces. \(X\) is imbedded in \(Y\), written as \(X \rightarrow Y\), if \(X\) is a vector subspace of \(Y\) and the identity operator \(I: X \longrightarrow Y\) is continuous for all \(x \in X\).

Remark The continuous identity operator implies that the norm of \(x \in X\) can be used to control the norm of \(y = I(x) \in Y\) with a constant \(M\),

$$ \norm{y; Y} \leq M \norm{x; X} \quad (\forall x \in X) $$

With the above defined norms for various continuous function spaces, the whole chain of imbeddings is summarized as follows when \(\Omega\) is convex:

\begin{align*} & C^{\infty} (\overline{\Omega}) \rightarrow \cdots C^{m+1}(\overline{\Omega}) \rightarrow C^{m,1}(\overline{\Omega}) \rightarrow C^{m,\lambda}(\overline\Omega) \\ & \rightarrow C^{m, v}(\overline\Omega) \rightarrow C^{m}(\overline\Omega) \rightarrow \cdots C^0(\overline{\Omega}) \end{align*}

where \(0 < v < \lambda < 1\).

Summary of continuous function spaces的更多相关文章

  1. Concept of function continuity in topology

    Understanding of continuity definition in topology When we learn calculus in university as freshmen, ...

  2. Constructing continuous functions

    This post summarises different ways of constructing continuous functions, which are introduced in Se ...

  3. 神经网络可以拟合任意函数的视觉证明A visual proof that neural nets can compute any function

    One of the most striking facts about neural networks is that they can compute any function at all. T ...

  4. (zhuan) Deep Deterministic Policy Gradients in TensorFlow

          Deep Deterministic Policy Gradients in TensorFlow AUG 21, 2016 This blog from: http://pemami49 ...

  5. <<Differential Geometry of Curves and Surfaces>>笔记

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

  6. Kernel Functions for Machine Learning Applications

    In recent years, Kernel methods have received major attention, particularly due to the increased pop ...

  7. MOOCULUS微积分-2: 数列与级数学习笔记 3. Convergence tests

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

  8. [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答

    1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...

  9. 39. Volume Rendering Techniques

    Milan Ikits University of Utah Joe Kniss University of Utah Aaron Lefohn University of California, D ...

随机推荐

  1. 【转】Java并发编程:Thread类的使用

    一.线程的状态 在正式学习Thread类中的具体方法之前,我们先来了解一下线程有哪些状态,这个将会有助于对Thread类中的方法的理解. 线程从创建到最终的消亡,要经历若干个状态.一般来说,线程包括以 ...

  2. 子元素position:absolute定位之后脱离文档流,怎么使子元素撑开父元素

    纯粹的CSS无法实现.因为position:absolute就是脱离文档流,怎么能让父元素不塌陷呢? 目前想到的只能用js和jquery来实现了,用js获取子元素的高度,赋值给父元素. <!DO ...

  3. hue报错StructuredException: timed out (code THRIFTSOCKET): None的处理

    通过hue的web界面进行hive的sql查询,无法显示结果并报错timeout 报错如下:[28/Jul/2017 11:23:29 +0800] decorators ERROR error ru ...

  4. java使用RunTime调用windows命令行

    当Java需要调用windows系统进行交互时,可以使用Runtime进行操作. 例子: 1.调用window中获取关于java相关的进行信息 Runtime rt = Runtime.getRunt ...

  5. bootstrap的treeview使用方法

    首先引入文件: <link href="./css/bootstrap.css" rel="stylesheet"> <script src= ...

  6. Android PermissionUtils:运行时权限工具类及申请权限的正确姿势

    Android PermissionUtils:运行时权限工具类及申请权限的正确姿势 ifadai 关注 2017.06.16 16:22* 字数 318 阅读 3637评论 1喜欢 6 Permis ...

  7. redhat7.3 superset的离线安装

    superset是一个python 开发的可视化工具,可以与kylin连接进行数据分析,在官网的讲解中,采用了在线安装方式,生产环境中有yum源,但是没有网,不得不采用离线安装方式.(我们先在有网的环 ...

  8. 大数据python词频统计之本地分发-file

    统计某几个词在文章出现的次数 -file参数分发,是从客户端分发到各个执行mapreduce端的机器上 1.找一篇文章The_Man_of_Property.txt如下: He was proud o ...

  9. PID控制器开发笔记之七:微分先行PID控制器的实现

    前面已经实现了各种的PID算法,然而在某些给定值频繁且大幅变化的场合,微分项常常会引起系统的振荡.为了适应这种给定值频繁变化的场合,人们设计了微分先行算法. 1.微分先行算法的思想 微分先行PID控制 ...

  10. Confluence 6 缓存状态

    Confluence 为系统的内部缓存提供了缓存的状态以便于你对缓存的大小的命中率进行跟踪,在必要的情况下,你可以对缓存进行调整,让缓存能够更好的满足你的使用需求.请查看 Performance Tu ...