Summary of continuous function spaces
In general differential calculus, we have learned the definitions of function continuity, such as functions of class \(C^0\) and \(C^2\). For most cases, we only take them for granted as for example, we have memorized the formulations of Green identities while ignored the conditions on function's continuities. Although this is helpful for a "vivid" and "naive" understanding, mathematical rigorousness and structural beauties are lost. Therefore, this article summarizes several definitions of function continuities and clarifies their imbedding relationships.
Definition (Continuous function space \(C^m(\Omega)\) with order \(m\)) For non-negative integer \(m\), \(C^m(\Omega)\) is the vector space consisting of all functions \(\phi\) with their partial derivatives \(D^{\alpha} \phi\) of orders \(0 \leq \abs{\alpha} \leq m\) continuous on an open set \(\Omega\).
Because the domain \(\Omega\) is open, functions in \(C^m(\Omega)\) may not be bounded, which seldom appear in engineering cases. Therefore, the spaces of bounded continuous functions \(C_B^m(\Omega)\) are introduced as below, which are subspaces of \(C^m(\Omega)\).
Definition (Bounded continuous function spaces \(C_B^m(\Omega)\)) \(C_B^m(\Omega)\) is a subspace of \(C^m(\Omega)\) and for all \(\phi \in C_B^m(\Omega)\), its partial derivatives \(D^{\alpha} \phi\) of orders \(0 \leq \abs{\alpha} \leq m\) are bounded on \(\Omega\). \(C_B^m(\Omega)\) is a Banach space with the norm defined as $$ \norm{\phi; C_B^m(\Omega)} = \max_{0 \leq \abs{\alpha} \leq m} \sup_{x \in \Omega} \abs{D^{\alpha} \phi(x)} $$
Because the domain \(\Omega\) is open in \(\mathbb{R}^n\), we have the intention to continuously extend the function to domain boundary \(\pdiff\Omega\) (note: This is very important because it determines for example whether our solution to a PDE can be extended continuously to match the given boundary condition). Then comes the definition of bounded and uniformly continuous function spaces \(C^{m}(\overline{\Omega})\).
Definition (Spaces of bounded and uniformly continuous functions \(C^{m}(\overline{\Omega})\)) \(C^{m}(\overline{\Omega})\) is a subspace of \(C_B^{m}(\Omega)\) and for all \(\phi \in C^{m}(\overline{\Omega})\), its partial derivatives \(D^{\alpha} \phi\) of orders \(0 \leq \abs{\alpha} \leq m\) are uniformly continuous on \(\Omega\). \(C^{m}(\overline{\Omega})\) is a Banach space with the norm defined as $$ \norm{\phi; C^m(\overline{\Omega})} = \max_{0 \leq \abs{\alpha} \leq m} \sup_{x \in \Omega} \abs{D^{\alpha} \phi(x)} $$
Remark
- A bounded and uniformly continuous function has a unique, bounded and continuous extension to \(\overline{\Omega}\).
- Uniform continuity can be understood as: a change in the function value anywhere in the function's range can control the change of independent variable uniformly, i.e. there is a global common bound on it. At the first glance, we tend to say that if a function is uniformly continuous, it is also bounded. However, this is not always true and we leave this question to future post.
Finally, we have the definition of Hölder and Lipschitz continuous function spaces.
Definition (Spaces of Hölder continuous functions \(C^{m,\lambda}(\overline{\Omega})\)) \(C^{m,\lambda}(\overline{\Omega})\) is a subspace of \(C^{m}(\overline{\Omega})\) and for all \(\phi \in C^{m,\lambda}(\overline{\Omega})\), its partial derivatives \(D^{\alpha} \phi\) satisfies a Hölder condition of exponent \(\lambda \in (0, 1]\), i.e. there exists a constant \(K\) such that
$$ \abs{D^{\alpha} \phi(x) - D^{\alpha} \phi(y)} \leq K\abs{x - y}^{\lambda} \quad (x, y \in \Omega) $$
When the Hölder exponent \(\lambda\) is 1, functions in the space \(C^{m,1}(\overline{\Omega})\) are Lipschitz continuous. \(C^{m,\lambda}(\overline{\Omega})\) is a Banach space with the norm defined as $$ \norm{\phi; C^{m,\lambda}(\overline{\Omega})} = \abs{\phi; C^m(\overline{\Omega})} + \max_{0 \leq \abs{\alpha} \leq m} \sup_{\overset{x, y \in \Omega}{x \neq y}} \frac{\abs{D^{\alpha} \phi(x) - D^{\alpha} \phi(y)}}{\abs{x - y}^{\lambda}} $$
Next, we'll show the imbedding chain of the above continuous function spaces.
Definition (Imbeddings) Let \(X\) and \(Y\) be normed spaces. \(X\) is imbedded in \(Y\), written as \(X \rightarrow Y\), if \(X\) is a vector subspace of \(Y\) and the identity operator \(I: X \longrightarrow Y\) is continuous for all \(x \in X\).
Remark The continuous identity operator implies that the norm of \(x \in X\) can be used to control the norm of \(y = I(x) \in Y\) with a constant \(M\),
$$ \norm{y; Y} \leq M \norm{x; X} \quad (\forall x \in X) $$
With the above defined norms for various continuous function spaces, the whole chain of imbeddings is summarized as follows when \(\Omega\) is convex:
\begin{align*} & C^{\infty} (\overline{\Omega}) \rightarrow \cdots C^{m+1}(\overline{\Omega}) \rightarrow C^{m,1}(\overline{\Omega}) \rightarrow C^{m,\lambda}(\overline\Omega) \\ & \rightarrow C^{m, v}(\overline\Omega) \rightarrow C^{m}(\overline\Omega) \rightarrow \cdots C^0(\overline{\Omega}) \end{align*}
where \(0 < v < \lambda < 1\).
Summary of continuous function spaces的更多相关文章
- Concept of function continuity in topology
Understanding of continuity definition in topology When we learn calculus in university as freshmen, ...
- Constructing continuous functions
This post summarises different ways of constructing continuous functions, which are introduced in Se ...
- 神经网络可以拟合任意函数的视觉证明A visual proof that neural nets can compute any function
One of the most striking facts about neural networks is that they can compute any function at all. T ...
- (zhuan) Deep Deterministic Policy Gradients in TensorFlow
Deep Deterministic Policy Gradients in TensorFlow AUG 21, 2016 This blog from: http://pemami49 ...
- <<Differential Geometry of Curves and Surfaces>>笔记
<Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...
- Kernel Functions for Machine Learning Applications
In recent years, Kernel methods have received major attention, particularly due to the increased pop ...
- MOOCULUS微积分-2: 数列与级数学习笔记 3. Convergence tests
此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...
- [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答
1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...
- 39. Volume Rendering Techniques
Milan Ikits University of Utah Joe Kniss University of Utah Aaron Lefohn University of California, D ...
随机推荐
- ORACLE IMPDP导入报表数据已存在
背景 搞了这么多年oracle,不论是开发和运维,自认为是都了解了,和dba差的只是熟练的问题,因为毕竟不是天天搞它.不过突然听说数据泵导入的功能,大吃一惊,好像有印象,以为是落后的,一查,竟然是先进 ...
- mysql 定时备份bat脚本 ,方便小型服务简单快速备份mysql
mysql定时备份bat脚本 echo 数据库为用户名为root 密码为root 数据库名为kdykt echo mysqldump 命令如果没有配置环境变量要在bin目录下执行 set " ...
- MySql 使用规范推荐(转)
在java应用开发中深知数据库的重要性,绝大多数情况下数据库的性能决定了程序的性能,前期如果埋下的坑越多到后期会成为整个程序的瓶颈,所以希望java开发者一定要重视!!!! 一.基础规范 1.使用In ...
- springmvc框架原理分析和简单入门程序
一.什么是springmvc? 我们知道三层架构的思想,并且如果你知道ssh的话,就会更加透彻的理解这个思想,struts2在web层,spring在中间控制,hibernate在dao层与数据库打交 ...
- Confluence 6 管理协同编辑 - 最大编辑者的限制
我们限制为最多 12 个用户可以同时对一个页面进行编辑.这个意味着当一个页面已经有 12 个用户正在编辑了,13 个用户是不能进入编辑界面的,直到 12 个用户中有一个用户已经离开了. 系统管理员可以 ...
- Confluence 6 启用主题评论
页面或者博客页面中显示的评论以下面 2 种方式显示: 主题模式(Threaded):以继承回复的方式显示页面的评论.每一回复的评论将会在不同评论之间显示,以表示各个评论之间的关系. 平面模式(Flat ...
- python使用 HTMLTestRunner.py生成测试报告
HTMLTestRunner.py python 2版本 下载地址:http://tungwaiyip.info/software/HTMLTestRunner.html 使用时,先建立一个”PyDe ...
- PHP 抽象类、接口,traint详解
PHP底层实现(http://blog.jobbole.com/94475/) 一,抽象类:abstract abstract class HeHe{ public $age=18;//可以定义属性 ...
- 分布式Dubbo快速入门
目录 Dubbo入门 背景 zookeeper安装 发布Dubbo服务 Dubbo Admin管理 消费Dubbo服务 抽取与依赖版本管理 Dubbo入门 Editor:SimpleWu Dubbo是 ...
- js之DOM对象三
一.JS中for循环遍历测试 for循环遍历有两种 第一种:是有条件的那种,例如 for(var i = 0;i<ele.length;i++){} 第二种:for (var i in ...