很多问题,归结起来是微分方程(组)求解的问题。比如:为什么使用三级火箭发射卫星、阻滞增长人口模型的建立……

MATLAB提供了良好的微分方程求解方案。

一、MATLAB求微分方程的符号解

matlab求常微分方程:

[y1,….yN] = dsolve(eqns,conds,Name,Value);

param:

  eqns:符号微分方程或者符号微分方程组(逗号隔开即可)

  conds:初值条件

return:

  有conds返回符号解,否则返回通解

例子:

1. 求解常微分方程通解:

x^2 + y + ( x-2y)*y'= 0;

 clc,clear
syms y(x); dsolve(x^+y+(x-*y)*diff(y) == )

2. 求解常微分方程,初值问题

y'''– y' = x; y(1) = 8,y'(1) = 7,y''(2) = 4

 clc,clear
syms y(x)
df = diff(y);
d2y = diff(y,);
y = dsolve(diff(y,) - d2y == x,y() == ,df() == ,d2y() == ) t = simplify(y) %化简结果

y =x*((exp(-1)*(19*exp(1) - 14))/2 - 1) + 7*exp(-2)*exp(x) - x^2/2 - x^3/6 + (exp(-1)*(19*exp(1) - 14))/2 - (exp(-1)*(25*exp(1) - 21))/3 - 1
t =(17*x)/2 + 7*exp(x - 2) - 7*x*exp(-1) - x^2/2 - x^3/6 + 1/6

3. 常微分方程组

f''+ 3g = sin(x)

g'+ f' = cos(x)

求通解以及在初值条件为f'(2) = 0,f(3) = 3,g(5) =1处的一个特解。

clc,clear
syms f(x) g(x)
df = diff(f);
[f1,g1] = dsolve(df + *g == sin(x),diff(g) + diff(f) == cos(x));
f1 = simplify(f1)
g1 = simplify(g1)
%特解
[f2,g2] = dsolve(df + *g == sin(x),diff(g) + df == cos(x),df() == ,f() == ,g() == );
f2 = simplify(f2)
g2 = simplify(g2)

4. 求线性微分方程组

X‘ = AX,初值X(0) = [1 2 1]’;这里X是向量 A是矩阵

其中,A = [2 1 3;0 2 –1;0 0 2];

syms x(t) y(t) z(t)
X = [x;y;z];
A = [ ; -; ];
B = [ ]';
[x,y,z] = dsolve(diff(X) == A*X,X() == B)

x =exp(2*t) + 5*t*exp(2*t) - (t^2*exp(2*t))/2
y =2*exp(2*t) - t*exp(2*t)

z =exp(2*t)

5. 其他微分方程组形式、初值、边值问题,用到查阅。

6. 另外注意一点,常微分方程的离散化解法不失为一种很有效的解法(差分、差商解法),这在《数值分析》一课中有讲解。

二、人口模型

1. Malthus模型

2. 阻滞增长模型(Logistic模型)

【数学建模】day05-微分方程建模的更多相关文章

  1. Atitit.软件的建模种类and 建模语言选型and UML???

    Atitit.软件的建模种类and  建模语言选型and UML??? 1. 4大的建模种类:ui建模,业务流程建模 , 业务对象建模, 数据库建模 1 2. 文本还是图片化(推荐)的建模 1 3.  ...

  2. 【UML 建模】UML建模语言入门 -- 静态图详解 类图 对象图 包图 静态图建模实战

    发现个好东西思维导图, 最近开始用MindManager整理博客 . 作者 :万境绝尘  转载请注明出处 : http://blog.csdn.net/shulianghan/article/deta ...

  3. 建模:3D建模

    ylbtech-建模:3D建模 “3D建模”通俗来讲就是通过三维制作软件通过虚拟三维空间构建出具有三维数据的模型.3D建模大概可分为:NURBS和多边形网格. NURBS对要求精细.弹性与复杂的模型有 ...

  4. 【UML 建模】UML建模语言入门 -- 用例视图详解 用例视图建模实战

    . 作者 :万境绝尘  转载请注明出处 : http://blog.csdn.net/shulianghan/article/details/18964835 . 一. 用例视图概述 用例视图表述哪些 ...

  5. 【UML 建模】UML建模语言入门-视图,事物,关系,通用机制

    . 作者 :万境绝尘  转载请注明出处 : http://blog.csdn.net/shulianghan/article/details/18964835 . 一. UML视图 1. Ration ...

  6. 10分钟明白对偶建模法 / +Leampms的“主模型建模”和“对偶模型建模” 之 —— 三类最短路径问题

    摘要 对偶模型建模是非常有独特的一种建模方式 —— 当问题本身要求指标极小的情况下,对偶模型表现为求极大.本文给出三种最短路径问题的线性规划/混合整数规划模型,其中的第三类最短路径问题采用对偶建模方法 ...

  7. verilog 建模笔记--低级建模

    来源  <verilog HDL那些事--建模篇> 1.并行建模的思想. 2.每个模块最好只有一个功能.(便于修改和扩展,特别在大的项目中) 典型的 HDL 教科书中,才不会要读者了解“模 ...

  8. 3DMAX 7 角色建模1 人头建模

    说明: mesh与poly 可编辑多边形是一个多边形网格:即与可编辑网格不同,其使用超过三面的多边形.可编辑多边形非常有用,因为它们可以避免看不到边缘.例如,如果您对可编辑多边形执行切割和切片操作,程 ...

  9. 数据库建模、面向对象建模>从零开始学java系列

    目录 数据库建模 前置知识 使用PowerDesigner数据库建模设计 一对多CDM概念数据模型设计 多对多的PDM物理数据模型设计(针对mysql) PowerDesigner将不同的模型进行转换 ...

  10. 2018年中国研究生数学建模竞赛C题 二等奖 赛题论文

    2018年中国研究生数学建模竞赛C题 对恐怖袭击事件记录数据的量化分析 恐怖袭击是指极端分子或组织人为制造的.针对但不仅限于平民及民用设施的.不符合国际道义的攻击行为,它不仅具有极大的杀伤性与破坏力, ...

随机推荐

  1. SQL Server-索引故事的遥远由来,原来是这样的?(二十八)

    前言 前段时间工作比较忙,每天回来也时不时去写有关ASP.NET Core的文章,无论是项目当中遇到的也好还是自学的也好都比较严谨的去叙述,喜欢分享,乐于分享这是我一直以来的态度,当然从中也会有些许错 ...

  2. SpringBoot整合Swagger2搭建API在线文档

    Swagger,中文"拽"的意思,它是一个功能强大的在线API在线文档,目前它的版本为2.x,所以称为Swagger2.Swagger2提供了在线文档的查阅和测试功能.利用Swag ...

  3. 关于NETCORE中的捆绑与最小化 以及与CDN连用

    参考文档:MSDN   Bundling and minification in ASP.NET Core 细说ASP.NET Core静态文件的缓存方式

  4. vuex mapState、mapGetters、mapActions、mapMutations的使用

    例子: index.js import Vue from 'vue' import Vuex from 'vuex' import mutations from './mutations' impor ...

  5. Python全栈开发之路 【第七篇】:面向对象编程设计与开发(1)

    本节内容 一.编程范式 编程指的是写程序.敲代码,就是指程序员用特定的语法.数据结构和算法编写的代码,目的是来告诉计算机如何执行任务的. 在编程的世界里最常见的两大流派是:面向过程与面向对象.“功夫的 ...

  6. struts2的基本使用

    struts2在web中当作前端控制器,接收来自页面的请求,使用过滤器拦截模式对请求进行拦截并交给相应配置的action类处理. 所以在web中使用最重要的是struts2的核心过滤器StrutsPr ...

  7. matplotlib 入门之The Lifecycle of a plot

    文章目录 Note 数据 准备开始 操控风格 我错了!!! 定制图像 特别注意!!! figsize=(width, height)!!! 格式化标签 组合多个可视化对象? 保存你的图片 matplo ...

  8. getQueryStringByName url参数/

    MasterId: (masterIdUrl != null && masterIdUrl != "") ? masterIdUrl : null ClassId: ...

  9. pycharm 中 import requests 报错

    一 , 使用Pycharm来抓取网页的时候,要导入requests模块,但是在pycharm中 import requests 报错. 原因: python中还没有安装requests库 解决办法: ...

  10. c++入门之浅入浅出类——分享给很多想形象理解的人

    引入类之前,首先引入一个古老的话题:类别,比如int ,char ,double:这些基本的类型方便了我们描述数据(请注意,这句话很重要),类型的存在就是为了方便我们描述数据的.而c++中的类其实作用 ...