Pairs Forming LCM

Find the result of the following code:

long long pairsFormLCM( int n ) {
    long long res = 0;
    for( int i = 1; i <= n; i++ )
        for( int j = i; j <= n; j++ )
           if( lcm(i, j) == n ) res++; // lcm means least common multiple
    return res;
}

A straight forward implementation of the code may time out. If you analyze the code, you will find that the code actually counts the number of pairs (i, j) for which lcm(i, j) = n and (i ≤ j).

Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 1014).

Output

For each case, print the case number and the value returned by the function 'pairsFormLCM(n)'.

Sample Input

15

2

3

4

6

8

10

12

15

18

20

21

24

25

27

29

Sample Output

Case 1: 2

Case 2: 2

Case 3: 3

Case 4: 5

Case 5: 4

Case 6: 5

Case 7: 8

Case 8: 5

Case 9: 8

Case 10: 8

Case 11: 5

Case 12: 11

Case 13: 3

Case 14: 4

Case 15: 2

题意:

在a,b中(a,b<=n)(1 ≤ n ≤ 1014),有多少组(a,b)  (a<b)满足lcm(a,b)==n;

思路:

这里要学个新东西:快问问神奇海螺

首先,我们已经知道了唯一分解定理:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en

那么,n的任意两个因子a,b肯定能表示为:

a=p1 ^ a1 * p2 ^ a2 *..........*pn ^ an

b=p1 ^ b1 * p2 ^ b2 *..........*pn ^ bn

现在给出公式:

gcd(a,b)=p1 ^ min(a1,b1) * p2 ^ min(a2,b2) *..........*pn ^ min(an,bn)

lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pn ^ max(an,bn)

现在我们就可以求解题目了。

要a,b的LCM是n,所以max(a1,b1)== e1,max(a2,b2)== e2以此类推到n,也就是说每一个ai,bi中至少有一个等于ei,求这种组合方式有多少。按上面的思路第pi组有2*(ei+1)种组合方式,但是还要再减去一种重复的 ai==bi==ei ,所以结果是 2*ei+1 种。

代码:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<queue>
#include<cmath>
#include<string>
#include<map>
#include<stack>
#include<set>
#include<vector>
#include<iostream>
#include<algorithm>
#define INF 0x3f3f3f3f
#define ll long long
const int N=1e7+5;
const int NN=1e6;
const int MOD=1000;
using namespace std;
bool prime[N];
ll p[NN];    //这里只能1e6不然就MLE了
int pn;
void get_prime(){
pn=0;
memset(prime,false,sizeof(prime));
prime[0]=prime[1]=true;
for(ll i=2;i<N;i++){
if(!prime[i]){
p[pn++]=i;
for(ll j=i*i;j<N;j+=i){
prime[j]=true;
}
}
}
}
ll deal(ll n){
ll res=1;
for(ll i=0;i<pn && p[i]*p[i]<=n;i++){
if(n%p[i]==0){
int tmp=0;
while(n%p[i]==0){
tmp++;
n/=p[i];
}
res*=(2*tmp+1);
}
}
if(n>1) res*=3;
res=res/2+1;
return res;
}
int main(){
get_prime();
int T,num=1;
ll ans,n;
scanf("%d",&T);
while(T--){
scanf("%lld",&n);
ans=deal(n);
printf("Case %d: %lld\n",num++,ans);
}
return 0;
}

Pairs Forming LCM (LCM+ 唯一分解定理)题解的更多相关文章

  1. UVa 10791 Minimum Sum LCM【唯一分解定理】

    题意:给出n,求至少两个正整数,使得它们的最小公倍数为n,且这些整数的和最小 看的紫书--- 用唯一分解定理,n=(a1)^p1*(a2)^p2---*(ak)^pk,当每一个(ak)^pk作为一个单 ...

  2. UVa 10791 - Minimum Sum LCM(唯一分解定理)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  3. LightOJ 1236 Pairs Forming LCM (LCM 唯一分解定理 + 素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1236 Pairs Forming LCM Time Limit:2000MS     Memor ...

  4. LightOJ-1236 Pairs Forming LCM 唯一分解定理

    题目链接:https://cn.vjudge.net/problem/LightOJ-1236 题意 给一整数n,求有多少对a和b(a<=b),使lcm(a, b)=n 注意数据范围n<= ...

  5. Pairs Forming LCM(素因子分解)

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=109329#problem/B    全题在文末. 题意:在a,b中(a,b<=n) ...

  6. Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)

    Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...

  7. LightOJ 1236 - Pairs Forming LCM(素因子分解)

    B - Pairs Forming LCM Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu ...

  8. UVA.10791 Minimum Sum LCM (唯一分解定理)

    UVA.10791 Minimum Sum LCM (唯一分解定理) 题意分析 也是利用唯一分解定理,但是要注意,分解的时候要循环(sqrt(num+1))次,并要对最后的num结果进行判断. 代码总 ...

  9. Pairs Forming LCM LightOJ - 1236 素因子分解

    Find the result of the following code: long long pairsFormLCM( int n ) {    long long res = 0;    fo ...

随机推荐

  1. idea 创建的maven+spring+mybatis项目整合 报错无法创建bean

    报错如下: Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with n ...

  2. Shuffle'm Up---poj3087

    题目链接 题意:有两个字符串s1,s2:经过交叉问是否得到字符串s,不能输出-1,能就输出交叉的次数 每次重组的串都是s2开始,重新组合时,前面一半是s1,后一半s2: #include<std ...

  3. SQL SERVER深入学习学习资料参考

    SQL SERVER深入学习学习资料参考 1.微软Webcast<sql server 2000完结篇>. 尽管微软Webcast出了很多关于Sql Server的系列课程,但是最为深入讲 ...

  4. 2018中国(深圳)IT领袖峰会马化腾演讲全文《数字中国的机遇与探索》

    我们今天大会的主题是数字中国,也佩服我们吴鹰主席在十年前就想到发展的趋势,这么早就把我们联合会取名数字中国.昨天有一个闭门会议,有相当大的篇幅大家都谈了科技.谈创新,大家觉得科技的威力和优势越来越明显 ...

  5. 走进APICloud的世界 (1)

    APICloud是什么东东?它是一个云端一体平台.啥意思?它利用HTML5跨平台技术同时满足android和ios的APP开发.相比APP传统开发而言,节约了不少成本,而且性能还可以和原生APP性能比 ...

  6. 什么时候block 是放在全局区里面的?

    When a Block literal is written where there are global variables When the syntax in a Block literal ...

  7. file_get_post实现post请求

    function Post($url, $post = null){     $context = array();     if (is_array($post)) {       ksort($p ...

  8. c#中WMI 中的日期和时间转为本地时间

    取得的值:CreationDate:20170122084915 .713600+480 转:   var objQuery = new ObjectQuery("select * from ...

  9. MFC用串行化实现文档存储和读取功能

    在面向对象的程序设计中,一般都是用二进制文件来保存文档资料.在VC++中控制和使用文件流的方法很多,MFC程序设计中常用的有两种方法:用CFile对象存储和读取文件:利用串行化存取文件.其中用CFil ...

  10. java后台获取和js拼接展示信息

    java后台获取和js拼接展示信息: html页面代码: <div class="results-bd"> <table id="activityInf ...