Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

* Dynamic Programming
* Definitaion
* m[i][j] is minimal distance from word1[0..i] to word2[0..j]
* So,
* 1) if word1[i] == word2[j], then m[i][j] == m[i-1][j-1].
* 2) if word1[i] != word2[j], then we need to find which one below is minimal:
* min( m[i-1][j-1], m[i-1][j], m[i][j-1] ) and +1 - current char need be changed.
* Let's take a look m[1][2] : "a" => "ab"
* +---+ +---+
* ''=> a | 1 | | 2 | '' => ab
* +---+ +---+
* +---+ +---+
* a => a | 0 | | 1 | a => ab
* +---+ +---+
*
* To know the minimal distance `a => ab`, we can get it from one of the following cases:
* 1) delete the last char in word1, minDistance( '' => ab ) + 1
* 2) delete the last char in word2, minDistance( a => a ) + 1
* 3) change the last char, minDistance( '' => a ) + 1

* For Example:
* word1="abb", word2="abccb"
* 1) Initialize the DP matrix as below:
* "" a b c c b
* "" 0 1 2 3 4 5
* a 1
* b 2
* b 3
* 2) Dynamic Programming
* "" a b c c b
* "" 0 1 2 3 4 5
* a 1 0 1 2 3 4
* b 2 1 0 1 2 3
* b 3 2 1 1 1 2

int min(int x, int y, int z) {
return std::min(x, std::min(y,z));
} int minDistance(string word1, string word2) {
int n1 = word1.size();
int n2 = word2.size();
if (n1==) return n2;
if (n2==) return n1;
vector< vector<int> > m(n1+, vector<int>(n2+));
for(int i=; i<m.size(); i++){
m[i][] = i;
}
for (int i=; i<m[].size(); i++) {
m[][i]=i;
} //Dynamic Programming
int row, col;
for (row=; row<m.size(); row++) {
for(col=; col<m[row].size(); col++){
if (word1[row-] == word2[col-] ){
m[row][col] = m[row-][col-];
}else{
int minValue = min(m[row-][col-], m[row-][col], m[row][col-]);
m[row][col] = minValue + ;
}
}
} return m[row-][col-];
}

72. Edit Distance *HARD*的更多相关文章

  1. 【Leetcode】72 Edit Distance

    72. Edit Distance Given two words word1 and word2, find the minimum number of steps required to conv ...

  2. 刷题72. Edit Distance

    一.题目说明 题目72. Edit Distance,计算将word1转换为word2最少需要的操作.操作包含:插入一个字符,删除一个字符,替换一个字符.本题难度为Hard! 二.我的解答 这个题目一 ...

  3. [LeetCode] 72. Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  4. 72. Edit Distance

    题目: Given two words word1 and word2, find the minimum number of steps required to convert word1 to w ...

  5. leetCode 72.Edit Distance (编辑距离) 解题思路和方法

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  6. [LeetCode] 72. Edit Distance(最短编辑距离)

    传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...

  7. LeetCode - 72. Edit Distance

    最小编辑距离,动态规划经典题. Given two words word1 and word2, find the minimum number of steps required to conver ...

  8. 72. Edit Distance(困难,确实挺难的,但很经典,双序列DP问题)

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  9. 【一天一道LeetCode】#72. Edit Distance

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given t ...

随机推荐

  1. Centos 更改系统时间

    .date //查看本地 .hwclock --show //查看硬件的时间 .如果硬件的时间是对不上,那就对硬件的时间进行修改 .hwclock --set --date '2222-22-22 2 ...

  2. bzoj 2038 A-小Z的袜子[hose] - 莫队算法

    作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… 具体来说,小Z把这N只袜子从1到N编号,然后从 ...

  3. JAVA I/O(六)多路复用IO

    在前边介绍Socket和ServerSocket连接交互的过程中,读写都是阻塞的.套接字写数据时,数据先写入操作系统的缓存中,形成TCP或UDP的负载,作为套接字传输到目标端,当缓存大小不足时,线程会 ...

  4. python_实现发送邮件功能

    #!/usr/bin/env python #-*- coding:utf-8 -*- from email import encoders from email.header import Head ...

  5. Python3基础 set 自动将重复合并掉 不支持索引

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  6. 用GDB调试Segmentation 段错误【转】

    本文转载自:http://blog.csdn.net/learnhard/article/details/4879834 调试Linux程序的时候,出现Segmentation Fault是最郁闷的事 ...

  7. Linux命令中:rsync和cp之间的区别

    rsync:只拷贝那些更新的文件: cp -u:也可以实现类似效果: 两者都基本可以满足备份的需求: 只是一般情况下,用rsync做这类备份之类的事情,更多见: 在备份的操作中,拷贝,过期文件的删除是 ...

  8. Hive创建内部表、外部表

    使用hive需要hive环境 启动Hive 进入HIVE_HOME/bin,启动hive ./hive 内部表 建表 hive> create table fz > (id int,nam ...

  9. C#完美读取CSV

    /// <summary>         /// 将DataTable中数据写入到CSV文件中         /// </summary>         /// < ...

  10. ros 启动launch文件,附带参数

    roslaunch cartographer_ros cartographer_ref.launch resolution:=0.07 #下面是cartographer_ref.launch的内容 & ...