A、Relic Discovery_hdu5982

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 57    Accepted Submission(s): 49

Problem Description
Recently, paleoanthropologists have found historical remains on an island in the Atlantic Ocean. The most inspiring thing is that they excavated in a magnificent cave and found that it was a huge tomb. Inside the construction,researchers identified a large number of skeletons, and funeral objects including stone axe, livestock bones and murals. Now, all items have been sorted, and they can be divided into N types. After they were checked attentively, you are told that there areAi items of the i-th type. Further more, each item of the i-th type requires Bi million dollars for transportation, analysis, and preservation averagely. As your job, you need to calculate the total expenditure.
 
Input
The first line of input contains an integer T which is the number of test cases. For each test case, the first line contains an integer N which is the number of types. In the next N lines, the i-th line contains two numbers Ai and Bi as described above. All numbers are positive integers and less than 101.
 
Output
For each case, output one integer, the total expenditure in million dollars.
 
Sample Input
1
2
1 2
3 4
 
Sample Output
14
 
Source
 
Recommend
jiangzijing2015   |   We have carefully selected several similar problems for you:  5994 5993 5992 5991 5990 
思路:第一题很简单,求费用,把每次的乘积都加起来就行了。
#include <iostream>
#include <cstdio> using namespace std; int main()
{
int n;
int t;
int a,b;
scanf("%d",&t);
for(int i=;i<t;i++){
scanf("%d",&n);
int sum=;
for(int j=;j<n;j++){
scanf("%d %d",&a,&b);
sum+=a*b;
}
printf("%d\n",sum);
} return ;
}

B、Pocket Cube_5983

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 23    Accepted Submission(s): 9

Problem Description
The Pocket Cube, also known as the Mini Cube or the Ice Cube, is the 2 × 2 × 2 equivalence of a Rubik’s Cube.
The cube consists of 8 pieces, all corners.
Each piece is labeled by a three dimensional coordinate (h, k, l) where h, k, l ∈ {0, 1}. Each of the six faces owns four small faces filled with a positive integer.
For each step, you can choose a certain face and turn the face ninety degrees clockwise or counterclockwise.
You should judge that if one can restore the pocket cube in one step. We say a pocket cube has been restored if each face owns four same integers.
 
Input
The first line of input contains one integer N(N ≤ 30) which is the number of test cases.
For each test case, the first line describes the top face of the pocket cube, which is the common 2 × 2 face of pieces
labelled by (0, 0, 1),(0, 1, 1),(1, 0, 1),(1, 1, 1). Four integers are given corresponding to the above pieces.
The second line describes the front face, the common face of (1, 0, 1),(1, 1, 1),(1, 0, 0),(1, 1, 0). Four integers are
given corresponding to the above pieces.
The third line describes the bottom face, the common face of (1, 0, 0),(1, 1, 0),(0, 0, 0),(0, 1, 0). Four integers are
given corresponding to the above pieces.
The fourth line describes the back face, the common face of (0, 0, 0),(0, 1, 0),(0, 0, 1),(0, 1, 1). Four integers are
given corresponding to the above pieces.
The fifth line describes the left face, the common face of (0, 0, 0),(0, 0, 1),(1, 0, 0),(1, 0, 1). Four integers are given
corresponding to the above pieces.
The six line describes the right face, the common face of (0, 1, 1),(0, 1, 0),(1, 1, 1),(1, 1, 0). Four integers are given
corresponding to the above pieces.
In other words, each test case contains 24 integers a, b, c to x. You can flat the surface to get the surface development
as follows.

+ - + - + - + - + - + - +
| q | r | a | b | u | v |
+ - + - + - + - + - + - +
| s | t | c | d | w | x |
+ - + - + - + - + - + - +
| e | f |
+ - + - +
| g | h |
+ - + - +
| i | j |
+ - + - +
| k | l |
+ - + - +
| m | n |
+ - + - +
| o | p |
+ - + - +
Output
For each test case, output YES if can be restored in one step, otherwise output NO.
 
Sample Input
4 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 1 1 1 1 2 2 2 2 3 3 3 3 5 5 5 5 4 4 4 4 1 4 1 4 2 1 2 1 3 2 3 2 4 3 4 3 5 5 5 5 6 6 6 6 1 3 1 3 2 4 2 4 3 1 3 1 4 2 4 2 5 5 5 5 6 6 6 6
 
Sample Output
YES YES YES NO
 
Source
 
Recommend
jiangzijing2015   |   We have carefully selected several similar problems for you:  5994 5993 5992 5991 5990 
思路:在比赛的时候理解错意思了,以为是判断能不能复原模仿,而没看到只需要一步。
魔方是2*2的,有三种转的方法,上面顺时针转90度,逆时针转,前面顺时针,前面逆时针,左边顺时针(相当于右边顺时针),左边逆时针(相当于左边逆时针)
还有再加上不操作算是一种,总共七种类,模拟出来就行了。
 #include <iostream>
#include <cstdio> using namespace std; int a[][];
int b[][]; bool judge(){
int i=;
for(int j=;j<=;j++){
if(a[j][]==a[j][]&&a[j][]==a[j][]&&a[j][]==a[j][]){
i++;
}
}
if(i==){
return true;
}else{
return false;
}
} void opera1(){//前面顺时针
int t1,t2;
t1=a[][];
t2=a[][]; a[][]=a[][];
a[][]=a[][]; a[][]=a[][];
a[][]=a[][]; a[][]=a[][];
a[][]=a[][]; a[][]=t2;
a[][]=t1;
}
void opera2(){//前面逆时针
int t1,t2;
t1=a[][];
t2=a[][]; a[][]=a[][];
a[][]=a[][]; a[][]=a[][];
a[][]=a[][]; a[][]=a[][];
a[][]=a[][]; a[][]=t2;
a[][]=t1;
}
void opera3(){//上面顺时针
int t1,t2;
t1=a[][];
t2=a[][]; a[][]=a[][];
a[][]=a[][]; a[][]=a[][];
a[][]=a[][]; a[][]=a[][];
a[][]=a[][]; a[][]=t1;
a[][]=t2;
}
void opera4(){//上面逆时针
int t1,t2;
t1=a[][];
t2=a[][]; a[][]=a[][];
a[][]=a[][]; a[][]=a[][];
a[][]=a[][]; a[][]=a[][];
a[][]=a[][]; a[][]=t2;
a[][]=t1;
}
void opera5(){//左边顺指针
int t1,t2;
t1=a[][];
t2=a[][]; a[][]=a[][];
a[][]=a[][]; a[][]=a[][];
a[][]=a[][]; a[][]=a[][];
a[][]=a[][]; a[][]=t1;
a[][]=t2;
}
void opera6(){//左边逆时针
int t1,t2;
t1=a[][];
t2=a[][]; a[][]=a[][];
a[][]=a[][]; a[][]=a[][];
a[][]=a[][]; a[][]=a[][];
a[][]=a[][]; a[][]=t1;
a[][]=t2;
}
int main()
{
int n;
scanf("%d",&n);
while(n--){
for(int i=;i<=;i++){
for(int j=;j<=;j++){
scanf("%d",&a[i][j]);
b[i][j]=a[i][j];
}
}
if(judge()){
printf("YES\n");
continue;
}
opera1();
if(judge()){
printf("YES\n");
continue;
}
for(int i=;i<=;i++){
for(int j=;j<=;j++){
a[i][j]=b[i][j];
}
}
opera2();
if(judge()){
printf("YES\n");
continue;
}
for(int i=;i<=;i++){
for(int j=;j<=;j++){
a[i][j]=b[i][j];
}
}
opera3();
if(judge()){
printf("YES\n");
continue;
}
for(int i=;i<=;i++){
for(int j=;j<=;j++){
a[i][j]=b[i][j];
}
}
opera4();
if(judge()){
printf("YES\n");
continue;
}
for(int i=;i<=;i++){
for(int j=;j<=;j++){
a[i][j]=b[i][j];
}
}
opera5();
if(judge()){
printf("YES\n");
continue;
}
for(int i=;i<=;i++){
for(int j=;j<=;j++){
a[i][j]=b[i][j];
}
}
opera6();
if(judge()){
printf("YES\n");
continue;
}
for(int i=;i<=;i++){
for(int j=;j<=;j++){
a[i][j]=b[i][j];
}
}
printf("NO\n");
}
return ;
}

C、Pocky_hdu5984

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 54    Accepted Submission(s): 20

Problem Description
Let’s talking about something of eating a pocky. Here is a Decorer Pocky, with colorful decorative stripes in the coating, of length L.
While the length of remaining pocky is longer than d, we perform the following procedure. We break the pocky at any point on it in an equal possibility and this will divide the remaining pocky into two parts. Take the left part and eat it. When it is not longer than d, we do not repeat this procedure.
Now we want to know the expected number of times we should repeat the procedure above. Round it to 6 decimal places behind the decimal point.
 
Input
The first line of input contains an integer N which is the number of test cases. Each of the N lines contains two float-numbers L and d respectively with at most 5 decimal places behind the decimal point where 1 ≤ d, L ≤ 150.
 
Output
For each test case, output the expected number of times rounded to 6 decimal places behind the decimal point in a line.
 
Sample Input
6
1.0 1.0
2.0 1.0
4.0 1.0
8.0 1.0
16.0 1.0
7.00 3.00
 
Sample Output
0.000000
1.693147
2.386294
3.079442
3.772589
1.847298
 
Source
 
Recommend
jiangzijing2015   |   We have carefully selected several similar problems for you:  5994 5993 5992 5991 5990 
思路:说实话比赛的时候根本不知道怎么做出来的。
好久之后才队友想起来,输出了一下log2,突然发现了规律。
赛后看别的队,一看0.693147就知道log2了,这就是做题多了有经验了啊。
但当时说的题解好像是求微积分,还是求导呢,把公式推导出来的。。。
 #include <iostream>
#include <cstdio>
#include <cmath> using namespace std; int main()
{
int n;
double a,b;
scanf("%d",&n);
while(n--){
scanf("%lf%lf",&a,&b);
if(a<=b){
printf("0.000000\n");
continue;
}
printf("%.6lf\n",log(a)-log(b)+);
}
return ;
}

2016ACM青岛区域赛题解的更多相关文章

  1. 2016 ACM/ICPC Asia Regional Qingdao Online(2016ACM青岛网络赛部分题解)

    2016 ACM/ICPC Asia Regional Qingdao Online(部分题解) 5878---I Count Two Three http://acm.hdu.edu.cn/show ...

  2. 2016青岛区域赛.Coding Contest(费用流 + 概率计算转换为加法计算)

    Coding Contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  3. ACM/ICPC2016 青岛区域赛

    A(hdu5982).(模拟) 题意:输入n对数,将每对数相乘并相加 分析:模拟 B(hdu5983).(模拟) 题意:给你一个二阶魔方,问能否通过一次旋转使得给定魔方的每个面颜色相同 分析:模拟 C ...

  4. 2016ACM-ICPC Qingdao Online青岛网络赛题解

    TonyFang+Sps+我=5/12 滚了个大粗 2016年9月21日16:42:36 10题完工辣 01 题意:求形同的数中大于n的最小值 题解:预处理所有的(5194个),在这里面二分 #inc ...

  5. 2016 年 ACM/ICPC 青岛区域赛 Problem C Pocky

    昨晚乱入学弟的训练赛,想了一下这个题.推导的过程中,加深了对公理化的概率论理解.$\newcommand{\d}{\mathop{}\!\mathrm{d}}$ 解法一 考虑 $ d < L$ ...

  6. 2018 ACM-ICPC南京区域赛题解

    解题过程 开场开A,A题shl看错题意,被制止.然后开始手推A,此时byf看错E题题意,开始上机.推出A的规律后,shl看了E题,发现题意读错.写完A题,忘记判断N=0的情况,WA+1.过了A后,sh ...

  7. Tournament ZOJ - 4063 (青岛区域赛 F 打表)

    打表题.. 规律是找出来了 奈何优化不了 .... #include <iostream> #include <cstdio> #include <sstream> ...

  8. UVALive - 7740 Coding Contest 2016 青岛区域赛 (费用流)

    题意:每个点i有\(s_i\)个人和\(b_i\)份食物,每个人都要找到一份食物.现在有M条有向边,从点i到点j,容量为c,第一次走过不要紧,从第二次开始就要承担\(p(0<p<1)\)的 ...

  9. 第42届亚洲区域赛青岛站(2017icpc青岛)经验总结以及一些感想

    上一次写这种东西还是天梯赛,当时打完心里也是挺激动的,然后我们队也没有去参加省赛,但是过了一段时间我还是从那里面恢复了出来.因为我当时确实还是很菜的,当时连个暴力都不会,看着自己仅过的那些百度的题目确 ...

随机推荐

  1. layer.open打开iframe页面的调用父页面方法及关闭

    //调用父类方法 window.parent.exportData($('#shownum').val(),$('#splitstr').val()); //关闭iframe页面var index = ...

  2. 【BZOJ-1146】网络管理Network DFS序 + 带修主席树

    1146: [CTSC2008]网络管理Network Time Limit: 50 Sec  Memory Limit: 162 MBSubmit: 3495  Solved: 1032[Submi ...

  3. Java开发环境搭建——Idea开发环境

    Idea版本选择由于公司使用JDK7,所以我选择安装Version 2016.1.4(手动安装试验出来的,最新版的2016.1.4启动时提示需要安装JDK8)下载 其实可以安装多个版本的JDK,然后指 ...

  4. PostgreSQL

    PostgreSQL新手入门   作者: 阮一峰 日期: 2013年12月22日 自从MySQL被Oracle收购以后,PostgreSQL逐渐成为开源关系型数据库的首选. 本文介绍PostgreSQ ...

  5. Dubbo项目demo搭建

    项目参考: http://dubbo.io/User+Guide-zh.htm https://my.oschina.net/superman158/blog/466637 项目使用 maven+id ...

  6. C# TCP socket发送大数据包时,接收端和发送端数据不一致 服务端接收Receive不完全

    简单的c# TCP通讯(TcpListener) C# 的TCP Socket (同步方式) C# 的TCP Socket (异步方式) C# 的tcp Socket设置自定义超时时间 C# TCP ...

  7. matlab下二重积分的蒙特卡洛算法

    %%monte_carlo_ff.m %被积函数(二重) function ff=monte_carlo_ff(x,y) ff=x*y^2;%函数定义处 end %%monte_carlo.m %蒙特 ...

  8. redis中的跳跃表

    参考:http://www.leoox.com/?p=347

  9. wireshark抓包工具简介以及tcp三次握手的一些含义

    wireshark是非常流行的网络封包分析软件,功能十分强大.可以截取各种网络封包,显示网络封包的详细信息.使用wireshark的人必须了解网络协议,否则就看不懂wireshark了.为了安全考虑, ...

  10. 纯css3制作写轮眼开眼及进化过程

    今天是火影忍者(漫画)宣告完结的日子,也是我首发的第一个随笔.看过火影的朋友都知道,写轮眼是什么,这里就不多说了.下面就直接展示整个效果,上张图,先睹为快: 目前已经测试 IE10.Firefox浏览 ...