The Wall has down and the King in the north has to send his soldiers to sentinel.
The North can be regard as a undirected graph (not necessary to be
connected), one soldier can cover one path. Today there's no so many
people still breathing in the north, so the King wants to minimize the
number of soldiers he sent to cover each edge exactly once. As a master
of his, you should tell him how to arrange soldiers.
InputThere might be multiple test cases, no more than 20. You need to read till the end of input.

In the first line, two integers n and m, representing the number of nodes and edges in the graph.

In the following m lines, each contain two integers, representing two ends of an edge.

There are no parallel edges or self loops.

1≤n,m≤100000
OutputFor each test case, the first line contains number of needed routes, p.

For the following p lines, an integer x in the beginning, followed
by x integers, representing the list of used edges. Every integer should
be a positive or negative integer. Its absolute value represents the
number of chosen edge (1~n). If it's positive, it shows that this edge
should be passed as the direction as the input, otherwise this edge
should be passed in the direction different from the input. Edges should
be in correct order.Sample Input

3 3
1 2
1 3
2 3

Sample Output

1
3 1 3 -2

思路:把奇点配对,然后求欧拉回路。

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
int Laxt[maxn],Next[maxn<<],To[maxn<<],cnt,num;
int x[maxn],y[maxn],ind[maxn]; bool used[maxn],vis[maxn<<];
vector<int>G[maxn]; int tot,M;
void add(int u,int v)
{
Next[++cnt]=Laxt[u]; Laxt[u]=cnt; To[cnt]=v; vis[cnt]=;
}
void dfs(int u,int f)
{
used[u]=;
for(int &i=Laxt[u];i;i=Next[i]){
if(!vis[i]){
vis[i]=vis[i^]=;
dfs(To[i],i);
}
}
if(!f) return ;
if(f<=(M<<|)) G[tot].push_back(f&?(f>>):-(f>>));
else tot++;
}
int main()
{
int N;
while(~scanf("%d%d",&N,&M)){
rep(i,,M) scanf("%d%d",&x[i],&y[i]);
cnt=; tot=;
rep(i,,N) Laxt[i]=used[i]=ind[i]=;
rep(i,,M) {
add(x[i],y[i]); add(y[i],x[i]);
ind[x[i]]++; ind[y[i]]++;
}
int x=;
rep(i,,N) {
if(ind[i]&){
if(x) add(x,i), add(i,x),x=;
else x=i;
}
}
rep(i,,N) if(!used[i]&&(ind[i]&)){
tot++; dfs(i,); tot--;
}
rep(i,,N) if(!used[i]&&ind[i]) {
tot++; dfs(i,);
}
printf("%d\n",tot);
rep(i,,tot) {
printf("%d",G[i].size()); int L=G[i].size();
rep(j,,L-) printf(" %d",G[i][j]); puts("");
}
rep(i,,tot) G[i].clear();
}
return ;
}

HDU - 6311:Cover(欧拉回路,最少的一笔画覆盖无向图)的更多相关文章

  1. HDU 6311 Cover (无向图最小路径覆盖)

    HDU 6311 Cover (无向图最小路径覆盖) Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/ ...

  2. HDU - 6311 Cover(无向图的最少路径边覆盖 欧拉路径)

    题意 给个无向图,无重边和自环,问最少需要多少路径把边覆盖了.并输出相应路径 分析 首先联通块之间是独立的,对于一个联通块内,最少路径覆盖就是  max(1,度数为奇数点的个数/2).然后就是求欧拉路 ...

  3. HDU - 6311 Cover (欧拉路径)

    题意:有最少用多少条边不重复的路径可以覆盖一个张无向图. 分析:对于一个连通块(单个点除外),如果奇度数点个数为 k,那么至少需要max{k/2,1}  条路径.将奇度数的点两两相连边(虚边),然后先 ...

  4. hdu 5386 Cover (暴力)

    hdu 5386 Cover Description You have an matrix.Every grid has a color.Now there are two types of oper ...

  5. HDU 6311 最少路径覆盖边集 欧拉路径

    Cover Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  6. hdu 6311 欧拉回路

    题意:求一个图(不一定联通)最小额外连接几条边,使得可以一笔画出来 大致做法 1.找出联通块 2.统计每一个连通块里面度数为奇数的点的个数, 有一个性质 一个图能够用一笔画出来,奇数点的个数不超过2个 ...

  7. hdu 1150 Machine Schedule 最少点覆盖转化为最大匹配

    Machine Schedule Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php? ...

  8. hdu 1150 Machine Schedule 最少点覆盖

    Machine Schedule Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php? ...

  9. HDOJ 1878 欧拉回路 nyoj 42一笔画问题

    #include<cstdio> #include<cstring> ]; int find(int x) { if(visited[x]!=x) return find(vi ...

随机推荐

  1. Java JDK5新特性-泛型

    2017-10-30 22:47:11 Java 泛型(generics)是 JDK 5 中引入的一个新特性, 泛型提供了编译时类型安全检测机制,该机制允许程序员在编译时检测到非法的类型. 泛型的本质 ...

  2. External RNA Controls Consortium (ERCC)

    ERCC是啥? 外部RNA控制联盟,就是一套RNA-seq,基因表达检测过程中的控制系统,使得结果具有可重复性. RNA Spike-in Controls for Gene Expression W ...

  3. iterm2用法与技巧

      1.设置窗口 定位到 [Preferences - Profiles - Window] 新窗口设定风格设为 [Top of Screen],这样每次新打开终端都会固定出现在屏幕的顶端且不会有窗口 ...

  4. 【异常】redis.clients.jedis.exceptions.JedisDataException: ERR unknown command 'PSETEX'

    在spring中 针对 RedisTemplate类: private RedisTemplate<String, String> template; 当调用下面方法 template.o ...

  5. 3-13《元编程》第5章Class Definitions 3-14(5-4Singleton Classes,2小时)3-15(3小时✅)

    类宏 环绕别名 singleton class Class就是增强的模块,类定义也就是模块定义. 5.1 Class Definitions Demystified 5.11 Inside Class ...

  6. EBS开发附件上传和下载功能(转)

    原文地址: EBS开发附件上传和下载功能 上传 Oracle ERP二次开发中使用的方式有两种,一是通过标准功能,在系统管理员中定义即可,不用写代码,就可以使几乎任何Form具有附件功能,具体参考系统 ...

  7. C++ string类与scanf和printf

    string要用cin和cout输入和输出. 如果一定要用scanf和printf的话,格式为: s.resize(20);scanf("%s", &s[0]); prin ...

  8. OC description和sel

    一.description方法 Description方法包括类方法和对象方法.(NSObject类所包含) (一)基本知识 -description(对象方法) 使用NSLog和@%输出某个对象时, ...

  9. C++技能重拾2

    13.类成员函数重载:局部同名函数将隐藏而不是重载全局声明,不引入父类名字空间时子类的同名函数不会和父类的构成重载,静态成员函数可以和非静态成员函数构成重载.本质是重载函数的定义是在相同的声明域里!! ...

  10. Windows各种各种消息投递函数

    1.SendMessage:发送消息给指定的窗口过程:直到窗口过程处理了消息才返回. 2.PostMessage:将消息放入消息队列(与指定窗口创建的线程相关)中:无需等待消息处理,立即返回.   不 ...