理解Storm Metrics
Storm exposes a metrics interface to report summary statistics across the full topology. It's used internally to track the numbers you see in the Nimbus UI console: counts of executes and acks; average process latency per bolt; worker heap usage; and so forth.
public interface IMetric {
public Object getValueAndReset();
}

public class ReducedMetric implements IMetric {
private final IReducer _reducer;
private Object _accumulator; public ReducedMetric(IReducer reducer) {
_reducer = reducer;
_accumulator = _reducer.init();
} public void update(Object value) {
_accumulator = _reducer.reduce(_accumulator, value);
} public Object getValueAndReset() {
Object ret = _reducer.extractResult(_accumulator);
_accumulator = _reducer.init();
return ret;
}
}
class MeanReducerState {
public int count = 0;
public double sum = 0.0;
} public class MeanReducer implements IReducer<MeanReducerState> {
public MeanReducerState init() {
return new MeanReducerState();
} public MeanReducerState reduce(MeanReducerState acc, Object input) {
acc.count++;
if(input instanceof Double) {
acc.sum += (Double)input;
} else if(input instanceof Long) {
acc.sum += ((Long)input).doubleValue();
} else if(input instanceof Integer) {
acc.sum += ((Integer)input).doubleValue();
} else {
throw new RuntimeException(
"MeanReducer::reduce called with unsupported input type `" + input.getClass()
+ "`. Supported types are Double, Long, Integer.");
}
return acc;
} public Object extractResult(MeanReducerState acc) {
if(acc.count > 0) {
return acc.sum / (double) acc.count;
} else {
return null;
}
}
}
context.registerMetric("execute_count", countMetric, 5);
context.registerMetric("word_count", wordCountMetric, 60);
context.registerMetric("word_length", wordLengthMeanMetric, 60);
IMetricsConsumer
Listens for all metrics, dumps them to log To use, add this to your topology's configuration: ```java conf.registerMetricsConsumer(org.apache.storm.metrics.LoggingMetricsConsumer.class, 1); ``` Or edit the storm.yaml config file: ```yaml topology.metrics.consumer.register: - class: "org.apache.storm.metrics.LoggingMetricsConsumer" parallelism.hint: 1
config.registerMetricsConsumer(LoggingMetricsConsumer.class, 2);


/usr/local/apache-storm-1.0.1/logs/workers-artifacts/FirstTopo-46-1468485056/6703 -rw-rw-r-- 1 java java 55K 7月 14 18:47 gc.log.0
-rw-rw-r-- 1 java java 28K 7月 14 18:47 worker.log
-rw-rw-r-- 1 java java 0 7月 14 16:31 worker.log.err
-rw-rw-r-- 1 java java 1.2M 7月 14 18:47 worker.log.metrics
-rw-rw-r-- 1 java java 0 7月 14 16:31 worker.log.out
-rw-rw-r-- 1 java java 5 7月 14 16:31 worker.pid
-rw-rw-r-- 1 java java 120 7月 14 16:31 worker.yaml
2016-07-14 16:31:40,700 31721 1468485098 192.168.1.127:6702 6:bolt execute_count 5
2016-07-14 16:31:45,702 36723 1468485103 192.168.1.127:6702 6:bolt execute_count 5
2016-07-14 16:31:50,702 41723 1468485108 192.168.1.127:6702 6:bolt execute_count 5
2016-07-14 16:32:10,705 61726 1468485128 192.168.1.127:6702 6:bolt execute_count 5
2016-07-14 16:32:15,708 66729 1468485133 192.168.1.127:6702 6:bolt execute_count 5
2016-07-14 16:32:25,699 76720 1468485143 192.168.1.127:6702 6:bolt __ack-count {spout:default=60}
2016-07-14 16:32:25,701 76722 1468485143 192.168.1.127:6702 6:bolt __sendqueue {sojourn_time_ms=0.0, write_pos=10, read_pos=10, arrival_rate_secs=0.10267994660642776, overflow=0, capacity=1024, population=0}
2016-07-14 16:32:25,701 76722 1468485143 192.168.1.127:6702 6:bolt word_count {happy=18, angry=19, excited=14}
2016-07-14 16:32:25,702 76723 1468485143 192.168.1.127:6702 6:bolt __receive {sojourn_time_ms=817.6666666666666, write_pos=62, read_pos=61, arrival_rate_secs=1.222992254382389, overflow=0, capacity=1024, population=1}
理解Storm Metrics的更多相关文章
- 用实例的方式去理解storm的并发度
什么是storm的并发度 一个topology(拓扑)在storm集群上最总是以executor和task的形式运行在suppervisor管理的worker节点上.而worker进程都是运行在jvm ...
- 理解Storm并发
作者:Jack47 PS:如果喜欢我写的文章,欢迎关注我的微信公众账号程序员杰克,两边的文章会同步,也可以添加我的RSS订阅源. 注:本文主要内容翻译自understanding-the-parall ...
- storm源码之理解Storm中Worker、Executor、Task关系 + 并发度详解
本文导读: 1 Worker.Executor.task详解 2 配置拓扑的并发度 3 拓扑示例 4 动态配置拓扑并发度 Worker.Executor.Task详解: Storm在集群上运行一个To ...
- 【原】理解Storm拓扑的并行
Storm入门教程 1. Storm基础 Storm Storm主要特点 Storm基本概念 Storm调度器 Storm配置 Guaranteeing Message Processing(消息处理 ...
- 理解storm的ACKER机制原理
一.简介: storm中有一个很重要的特性: 保证发出的每个tuple都会被完整处理.一个tuple被完全处理的意思是: 这个tuple以及由这个tuple所产生的所有的子tuple都被成 ...
- 【原】【译文】理解storm拓扑并行度
原文地址: http://storm.apache.org/releases/1.2.1/Understanding-the-parallelism-of-a-Storm-topology.html ...
- 理解Storm可靠性消息
看过一些别人写的, 感觉有些东西没太说清楚,个人主要以源代码跟踪,参考个人理解讲述,有错误请指正. 1基本名词 1.1 Tuple: 消息传递的基本单位.很多文章中介绍都是这么说的, 个人觉得应该更详 ...
- 【原】storm源码之理解Storm中Worker、Executor、Task关系
Storm在集群上运行一个Topology时,主要通过以下3个实体来完成Topology的执行工作:1. Worker(进程)2. Executor(线程)3. Task 下图简要描述了这3者之间的关 ...
- 理解 Storm 拓扑的并行度(parallelism)概念
组成:一个运行中的拓扑是由什么构成的:工作进程(worker processes),执行器(executors)和任务(tasks)! 在一个 Storm 集群中,Storm 主要通过以下三个部件来运 ...
随机推荐
- 0122有关List、Set、Map的练习
import java.util.ArrayList; import java.util.HashMap; import java.util.HashSet; public class SZYL { ...
- UIViewController之间的相互跳转
一.最普通的视图控制器UIViewContoller 一个普通的视图控制器一般只有模态跳转的功能(ipad我不了解除外,这里只说iPhone),这个方法是所有视图控制器对象都可以用的,而实现这种功能, ...
- [ML] 解决样本类别分布不均衡的问题
转自:3.4 解决样本类别分布不均衡的问题 | 数据常青藤 (组织排版上稍有修改) 3.4 解决样本类别分布不均衡的问题 说明:本文是<Python数据分析与数据化运营>中的“3.4 解决 ...
- tensorflow中的参数初始化方法
1. 初始化为常量 tf中使用tf.constant_initializer(value)类生成一个初始值为常量value的tensor对象. constant_initializer类的构造函数定义 ...
- ubuntu18.04 server配置静态ip (转载)
原文地址: https://blog.csdn.net/mossan/article/details/80381679 最新发布的ubuntu18.04 server,启用了新的网络工具netplan ...
- 杭电oj2001-C语言
题目 题目 Problem Description 输入两点坐标(X1,Y1),(X2,Y2),计算并输出两点间的距离. Input 输入数据有多组,每组占一行,由4个实数组成,分别表示x1,y1,x ...
- LG3812 【模板】线性基
题意 给定n个整数(数字可能重复),求在这些数中选取任意个,使得他们的异或和最大. \(1≤n≤50,0≤S_i≤2^{50}\) 分析 模板题. 推荐一篇好博客 现在我来证明一下线性基的性质. 性质 ...
- 1、ECMAScript 6 简介
ECMAScript 和 JavaScript 的关系 ES6 与 ECMAScript 2015 的关系 语法提案的批准流程 ECMAScript 的历史 部署进度 Babel 转码器 Traceu ...
- mibox open ports
root@dredd:/data/data/berserker.android.apps.sshdroid/home # netstat -lnpActive Internet connections ...
- hadoop 配置文件简析
文件名称 格式 描述 hadoop-env.sh bash脚本 记录hadoop要用的环境变量 core- ...