The solution for the problem can be divided into three cases:

case 1: if the delete node is leaf node, then we can simply remove it

case 2: if the delete node is has single side or substree

case 3: it has two children, then to keep it as a valid binary search tree, we can copy the min value from right subtree to delete node, to convert the problem into case 2

function Node(val) {
return {
val,
left: null,
right: null
};
} function Tree() {
return {
root: null,
addLeft(val, root) {
const node = Node(val);
root.left = node;
return root.left;
},
addRight(val, root) {
const node = Node(val);
root.right = node;
return root.right;
}
};
} const tree = new Tree();
const root = Node();
tree.root = root;
const n1 = tree.addLeft(, root);
const n2 = tree.addRight(, root);
const n3 = tree.addLeft(, n1);
const n4 = tree.addRight(, n1);
tree.addLeft(, n3);
tree.addRight(, n4);
const n5 = tree.addLeft(, n2);
tree.addRight(, n5);
const n6 = tree.addRight(, n2);
const n7 = tree.addRight(, n6);
tree.addLeft(, n7); /**
*
12
/ \
5 15
/ \ / \
3 7 13 17
/ \ \ \
1 9 14 20
/
18 Delete 15
First copy 17 to 15
12
/ \
5 17
/ \ / \
3 7 13 17
/ \ \ \
1 9 14 20
/
18
Then remove original 17
12
/ \
5 17
/ \ / \
3 7 13 20
/ \ \ /
1 9 14 18 */ function deleteNode(root, val) {
// base case, if leaf node, return
if (root === null) {
return root;
} else if (val > root.val) {
// if delete value is larger than root, search on right side of tree
root.right = deleteNode(root.right, val);
} else if (val < root.val) {
// if delete value is smaller than root, search on left side of tree
root.left = deleteNode(root.left, val);
} else {
// if found the delete value and it is leaf node
if (root.left === null && root.right === null) {
// set leaf node to null
root = null;
}
// if found the delete node and its right side has children
// set root to null and link to its right node
else if (root.left === null && root.right !== null) {
let temp = root.right;
root = null;
root = temp;
}
// if found the delete node and its left side and children
// set root to null and link to its left node
else if (root.left !== null && root.right === null) {
let temp = root.left;
root = null;
root = temp;
}
// the found node has children on both sides
// then pick the min value from rgiht side (or max value from left side)
// copy to current node
// reset it right side (or left side)
else {
const temp = root.right; // get the min on the right side or max on the left side
root.val = temp.val;
root.right = deleteNode(root.right, temp.val);
} return root;
}
} deleteNode(tree.root, ); console.log(JSON.stringify(tree.root.left, null, ));

[Algorithm] Delete a node from Binary Search Tree的更多相关文章

  1. Lintcode: Remove Node in Binary Search Tree

    iven a root of Binary Search Tree with unique value for each node. Remove the node with given value. ...

  2. Remove Node in Binary Search Tree 解答

    从BST中移除一个节点是比较复杂的问题,需要分好几种情况讨论. 如这篇文章,就讨论了删除节点 1.有无左右子树 2.只有右子树 3.只有左子树 三种情况. 一种简单些的思维是只考虑删除节点是否有右子树 ...

  3. 【Lintcode】087.Remove Node in Binary Search Tree

    题目: Given a root of Binary Search Tree with unique value for each node. Remove the node with given v ...

  4. [Algorithm] Inorder Successor in a binary search tree

    For the given tree, in order traverse is: visit left side root visit right side // 6,8,10,11,12,15,1 ...

  5. 数据结构基础---Binary Search Tree

    /// Binary Search Tree - Implemenation in C++ /// Simple program to create a BST of integers and sea ...

  6. [Algorithm] Check if a binary tree is binary search tree or not

    What is Binary Search Tree (BST) A binary tree in which for each node, value of all the nodes in lef ...

  7. Lintcode: Insert Node in a Binary Search Tree

    Given a binary search tree and a new tree node, insert the node into the tree. You should keep the t ...

  8. LeetCode解题报告——Convert Sorted List to Binary Search Tree & Populating Next Right Pointers in Each Node & Word Ladder

    1. Convert Sorted List to Binary Search Tree Given a singly linked list where elements are sorted in ...

  9. 85. Insert Node in a Binary Search Tree【easy】

    Given a binary search tree and a new tree node, insert the node into the tree. You should keep the t ...

随机推荐

  1. AES Test vectors

    Table of content List of test vectors for AES/ECB encryption mode AES ECB 128-bit encryption mode AE ...

  2. android adb命令 unable to connect to 192.168.1.155:5555

    如果使用有线网络无法用adb connect命令连接设备的话,可以选择使用无线wifi来连接. 首先在android设备上装一个叫做Adb Wireless的软件,打开wifi,然后打开adb wir ...

  3. EF6+Sqlite连接字符串的动态设置

    摘要 在winform中应用sqlite和ef,对于sqlite连接字串的设置,大多情况下是不想写死了,你不知道用户会将你的exe程序安装在什么位置,也不知道他的电脑盘符是什么,如果写死了,那么很有可 ...

  4. Ubuntu下配置用msmtp发送gmail邮件

    从https://gist.github.com/JosefJezek/6194563上找到的一个配置脚本,下载后添加可执行权限,然后运行即可. 下面是脚本setup-msmtp-for-gmail. ...

  5. lufylegend:图形变形3

    面来看看drawtriangles函数的扩展.利用drawtriangles函数来实现一个旋转的3D地球,效果如下 因为lufylegend1.5.0版的drawtriangles函数有个bug,所以 ...

  6. #ifdef #else #endif 的用法

    预处理就是在进行编译的第一遍词法扫描和语法分析之前所作的工作.说白了,就是对源文件进行编译前,先对预处理部分进行处理,然后对处理后的代码进行编译.这样做的好处是,经过处理后的代码,将会变的很精短. 关 ...

  7. cocos2d-x系列笔记技巧篇(2)---关于CREATE_FUNC宏的用法

    FROM://http://blog.csdn.net/jinciyulang/article/details/8631889 阅读cocos2d-x demo的代码,我们会看到有些头文件中使用CRE ...

  8. Linux学习6-CentOS搭建appium服务

    前言 用过appium的应该清楚,每次都需要先启动appium服务,然后再运行代码非常不方便,像selenium就不用启动服务,直接运行脚本. appium实际上只是提供服务,所以我想把它搭建到阿里云 ...

  9. epoll的两种工作模式

    epoll有两种模式,Edge Triggered(简称ET) 和 Level Triggered(简称LT).在採用这两种模式时要注意的是,假设採用ET模式,那么仅当状态发生变化时才会通知,而採用L ...

  10. tf.argmax

    tf.argmax(input, axis=None, name=None, dimension=None) Returns the index with the largest value acro ...