One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M≤ 100,000) unidirectional
(one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively: NM, and X 

Lines 2.. M+1: Line i+1 describes road i with three space-separated integers: Ai,Bi, and Ti. The described road runs from farm Ai to farm Bi,
requiring Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.

Sample Input

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output

10

Hint

Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

单向图 问牛去和回最短距离之和最大的

回来的好弄 直接最短路就行了

去时候的就把图反过来就行了

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<map>
#include<cstring>
#include<queue>
#include<stack>
#define inf 0x3f3f3f3f using namespace std; int n, m, x;
int graph[1005][1005];
bool vis[1005];
int dis1[1005], dis2[1005]; void dijkstra(int sec, int dis[])
{
memset(vis, false, sizeof(vis));
for(int i = 1; i <= n; i++){
dis[i] = graph[sec][i];
}
vis[sec] = true;
dis[sec] = 0;
for(int i = 1; i < n; i++){
int min = inf, min_num;
for(int j = 1; j <= n; j++){
if(!vis[j] && dis[j] < min){
min = dis[j];
min_num = j;
}
}
vis[min_num] = true;
for(int j = 1; j <= n; j++){
if(dis[j] > min + graph[min_num][j]){
dis[j] = min + graph[min_num][j];
}
}
}
} int main()
{
while(cin>>n>>m>>x){
memset(graph, inf, sizeof(graph));
for(int i = 0; i < m; i++){
int f, t, w;
cin>>f>>t>>w;
graph[f][t] = w;
}
dijkstra(x, dis1);
for(int i = 1; i <= n; i++){
for(int j = i; j <= n; j++){
swap(graph[i][j], graph[j][i]);
}
}
dijkstra(x, dis2); int ans = -1;
for(int i = 1; i <= n; i++){
ans = max(ans, dis1[i] + dis2[i]);
}
cout<<ans<<endl; } return 0;
}

POJ3268 Silver Cow Party【最短路】的更多相关文章

  1. POJ3268 Silver Cow Party —— 最短路

    题目链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  2. POJ3268 Silver Cow Party(dijkstra+矩阵转置)

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15156   Accepted: 6843 ...

  3. POJ 3268 Silver Cow Party 最短路

    原题链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total ...

  4. POJ 3268 Silver Cow Party 最短路—dijkstra算法的优化。

    POJ 3268 Silver Cow Party Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbe ...

  5. poj 3268 Silver Cow Party (最短路算法的变换使用 【有向图的最短路应用】 )

    Silver Cow Party Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13611   Accepted: 6138 ...

  6. POJ3268 Silver Cow Party Dijkstra最短路

    Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to atten ...

  7. poj3268 Silver Cow Party(最短路)

    非常感谢kuangbin专题啊,这道题一开始模拟邻接表做的,反向边不好处理,邻接矩阵的话舒服多了. 题意:给n头牛和m条有向边,每头牛1~n编号,求所有牛中到x编号去的最短路+回来的最短路的最大值. ...

  8. poj3268 Silver Cow Party (SPFA求最短路)

    其实还是从一个x点出发到所有点的最短路问题.来和回只需分别处理一下逆图和原图,两次SPFA就行了. #include<iostream> #include<cstdio> #i ...

  9. (poj)3268 Silver Cow Party 最短路

    Description One cow ≤ N ≤ ) conveniently numbered ..N ≤ X ≤ N). A total of M ( ≤ M ≤ ,) unidirection ...

随机推荐

  1. C#------如何使用Swagger调试接口

    1.打开NuGet程序包 2.安装下面两个程序包 3.安装完后会出现SwaggerConfig.cs类,并修改里面的内容 代码: [assembly: PreApplicationStartMetho ...

  2. dubbo开发前戏--ZooKeeper集群部署(3.4.6)

    最近在开发dubbo服务的时候一直用的是公司提供的zk平台,因为使用的人太多或者没人维护老是出问题,导致dubbo服务偶尔可以调通,偶尔调不通的情况,所以花点时间自己部署一套,后面出问题还方便看日志排 ...

  3. OO模式-Singleton

    讨论一: 既然仅仅有一个类?为什么非要用一个模式来定义?难道就不能用程序猿之间的约定又或者使用伟大的设计模式来完毕? 1)先来说说全局变量的优点,当定义一个全局变量时,不论什么一个函数或者一行代码都能 ...

  4. SpringMVC由浅入深day01_2springmvc入门程序

    2 入门程序 2.1 需求 以案例作为驱动. springmvc和mybaits使用一个案例(商品订单管理). 功能需求:商品列表查询 2.2 环境准备 数据库环境:mysql5.5 先导入sql_t ...

  5. vuejs时间格式化

    date.js export function formatDate(date, fmt) { if (/(y+)/.test(fmt)) { fmt = fmt.replace(RegExp.$1, ...

  6. Unity Animation需要Inspector右键打开Debug模式,然后勾选Legacy,最后再Inspector右键打开Normal

  7. U3D教程宝典之两步实现超实用的XML存档

    两步实现超实用的XML存档 本套存档的优点:易使用,跨平台,防作弊(内容加密 + 防拷贝) 脚本下载地址 使用方法非常简单:把GameDataManager和XmlSaver两个脚本添加至工程后(1) ...

  8. 剑指offer面试题5:逆序打印单链表(Java)

    Java创建单链表(头插法.尾插法),并逆序打印单链表: package day_0324; import java.util.Scanner; import java.util.Stack; cla ...

  9. J2EE学习篇之--Struts1详解

    今天来看一下Struts1的相关知识,其实Struts现在是出名的,每个Web开发者都会知道的,也是现在比较流行的框架,下面就来看一下我们为什么要用Struts框架呢? 摘要 1.建立在mvc这种好的 ...

  10. liunx trac 插件使用之GanttCalendarPlugin

    http://trac-hacks.org/wiki/GanttCalendarPlugin官网上的说明很清楚,处理做几点提示,以做记录. 1.我的Trac版本是1.0.1 我使用了'B' Metho ...