POJ3268 Silver Cow Party【最短路】
One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M≤ 100,000) unidirectional
(one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
Input
Lines 2.. M+1: Line i+1 describes road i with three space-separated integers: Ai,Bi, and Ti. The described road runs from farm Ai to farm Bi,
requiring Ti time units to traverse.
Output
Sample Input
4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3
Sample Output
10
Hint
单向图 问牛去和回最短距离之和最大的
回来的好弄 直接最短路就行了
去时候的就把图反过来就行了
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<map>
#include<cstring>
#include<queue>
#include<stack>
#define inf 0x3f3f3f3f
using namespace std;
int n, m, x;
int graph[1005][1005];
bool vis[1005];
int dis1[1005], dis2[1005];
void dijkstra(int sec, int dis[])
{
memset(vis, false, sizeof(vis));
for(int i = 1; i <= n; i++){
dis[i] = graph[sec][i];
}
vis[sec] = true;
dis[sec] = 0;
for(int i = 1; i < n; i++){
int min = inf, min_num;
for(int j = 1; j <= n; j++){
if(!vis[j] && dis[j] < min){
min = dis[j];
min_num = j;
}
}
vis[min_num] = true;
for(int j = 1; j <= n; j++){
if(dis[j] > min + graph[min_num][j]){
dis[j] = min + graph[min_num][j];
}
}
}
}
int main()
{
while(cin>>n>>m>>x){
memset(graph, inf, sizeof(graph));
for(int i = 0; i < m; i++){
int f, t, w;
cin>>f>>t>>w;
graph[f][t] = w;
}
dijkstra(x, dis1);
for(int i = 1; i <= n; i++){
for(int j = i; j <= n; j++){
swap(graph[i][j], graph[j][i]);
}
}
dijkstra(x, dis2);
int ans = -1;
for(int i = 1; i <= n; i++){
ans = max(ans, dis1[i] + dis2[i]);
}
cout<<ans<<endl;
}
return 0;
}
POJ3268 Silver Cow Party【最短路】的更多相关文章
- POJ3268 Silver Cow Party —— 最短路
题目链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS Memory Limit: 65536K Total ...
- POJ3268 Silver Cow Party(dijkstra+矩阵转置)
Silver Cow Party Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15156 Accepted: 6843 ...
- POJ 3268 Silver Cow Party 最短路
原题链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS Memory Limit: 65536K Total ...
- POJ 3268 Silver Cow Party 最短路—dijkstra算法的优化。
POJ 3268 Silver Cow Party Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbe ...
- poj 3268 Silver Cow Party (最短路算法的变换使用 【有向图的最短路应用】 )
Silver Cow Party Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13611 Accepted: 6138 ...
- POJ3268 Silver Cow Party Dijkstra最短路
Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to atten ...
- poj3268 Silver Cow Party(最短路)
非常感谢kuangbin专题啊,这道题一开始模拟邻接表做的,反向边不好处理,邻接矩阵的话舒服多了. 题意:给n头牛和m条有向边,每头牛1~n编号,求所有牛中到x编号去的最短路+回来的最短路的最大值. ...
- poj3268 Silver Cow Party (SPFA求最短路)
其实还是从一个x点出发到所有点的最短路问题.来和回只需分别处理一下逆图和原图,两次SPFA就行了. #include<iostream> #include<cstdio> #i ...
- (poj)3268 Silver Cow Party 最短路
Description One cow ≤ N ≤ ) conveniently numbered ..N ≤ X ≤ N). A total of M ( ≤ M ≤ ,) unidirection ...
随机推荐
- while 1要小心
之前判断一个接口的返回,一定约定好了是返回retcode 1或者retcode 0,就用的这个判断,但是接口挂了的时候,一直返回未登录,找了很长时间为什么cpu一直消耗那么高. 使用wihle 1时候 ...
- Android安装器学习笔记(一)
Android安装器学习笔记(一) 一.Android应用的四种安装方式: 1.通过系统应用PackageInstaller.apk进行安装,安装过程中会让用户确认 2.系统程序安装:在开机的时候自动 ...
- Dubbo -- 系统学习 笔记 -- 示例 -- 多协议
Dubbo -- 系统学习 笔记 -- 目录 示例 想完整的运行起来,请参见:快速启动,这里只列出各种场景的配置方式 多协议 可以自行扩展协议,参见:协议扩展 (1) 不同服务不同协议 比如:不同服务 ...
- centos 7 安装 gcc-4.9.3.tar.gz
由于编译新内核需要,更新了GCC编译器,自行获取文件,手动升级. 首先是获取文件:wget http://ftp.tsukuba.wide.ad.jp/software/gcc/releases/gc ...
- Redis 集群配置
Redis 集群介绍: (1) 为什么要使用集群:如果数据量很大,单台机器会存在存储空间不够用 .查询速度慢 .负载高等问题,部署集群就是为了解决这些问题(2) Redis 集群架构如下,采用无中心结 ...
- Ubuntu图形界面和字符界面转换、指定默认启动界面
1.按ALT+CTRL+F1.F2.F3.F4.F5.F6.F7可来回切换7个界面(Linux实体机) 其中ALT+CTRL+F7可切换到图形界面(Linux实体机) 如果是V ...
- Kafka consumer group位移重设
本文阐述如何使用Kafka自带的kafka-consumer-groups.sh脚本随意设置消费者组(consumer group)的位移.需要特别强调的是, 这是0.11.0.0版本提供的新功能且只 ...
- mac 常用的终端命令
OSX 的文件系统 OSX 采用的Unix文件系统,所有文件都挂在跟目录 / 下面,所以不在要有Windows 下的盘符概念. 你在桌面上看到的硬盘都挂在 /Volumes 下. 比如接上个叫做 US ...
- android新建的项目界面上没有显示怎么办?
看log也没有说明具体情况? 一翻折腾在清单文件里加了权限就好了!!!
- N76E003的学习之路(一)
N76E003是8051内核的一款单片机MCU,它提供丰富的特殊功能模块,包括: 1KRAM其中包括256字节SRAM,768字节XRAM. 最多可达18个标准管脚. 两组标准16位定时器/计数器:定 ...