题目:

Monkey and Banana

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 13615    Accepted Submission(s):
7179

Problem Description
A group of researchers are designing an experiment to
test the IQ of a monkey. They will hang a banana at the roof of a building, and
at the mean time, provide the monkey with some blocks. If the monkey is clever
enough, it shall be able to reach the banana by placing one block on the top
another to build a tower and climb up to get its favorite food.

The
researchers have n types of blocks, and an unlimited supply of blocks of each
type. Each type-i block was a rectangular solid with linear dimensions (xi, yi,
zi). A block could be reoriented so that any two of its three dimensions
determined the dimensions of the base and the other dimension was the height.

They want to make sure that the tallest tower possible by stacking
blocks can reach the roof. The problem is that, in building a tower, one block
could only be placed on top of another block as long as the two base dimensions
of the upper block were both strictly smaller than the corresponding base
dimensions of the lower block because there has to be some space for the monkey
to step on. This meant, for example, that blocks oriented to have equal-sized
bases couldn't be stacked.

Your job is to write a program that
determines the height of the tallest tower the monkey can build with a given set
of blocks.

 
Input
The input file will contain one or more test cases. The
first line of each test case contains an integer n,
representing the number
of different blocks in the following data set. The maximum value for n is
30.
Each of the next n lines contains three integers representing the values
xi, yi and zi.
Input is terminated by a value of zero (0) for n.
 
Output
For each test case, print one line containing the case
number (they are numbered sequentially starting from 1) and the height of the
tallest possible tower in the format "Case case: maximum height =
height".
 
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
 
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
大意是求DAG模型的最大高度,每个盒子有无限个,所以对盒子来说有三种可能的高度(长宽倒置不考虑);
代码:

#include<bits/stdc++.h>
using namespace std;
int dp[10005];
struct C
{
int x,y;
int height;
};
bool cmp(C a,C b)
{
return a.y<=b.y;
}
bool operator<(C a,C b)
{
if (a.x<b.x&&a.y<b.y) return 1;
else if (a.x<b.y&&a.y<b.x) return 1;
else return 0;
}
int main()
{
C B[10005];
int a,b,c,i,j,maxn,n,k=0;
while (cin>>n&&n){int p=-1;maxn=-1;k++;
memset(dp,0,sizeof(dp));
for (i=1;i<=n;i++){
scanf("%d%d%d",&a,&b,&c);
B[++p].x=min(a,b),B[p].y=max(a,b),B[p].height=c;
B[++p].x=min(b,c),B[p].y=max(b,c),B[p].height=a;
B[++p].x=min(a,c),B[p].y=max(a,c),B[p].height=b;

}
sort(B,B+p+1,cmp);

for (i=0;i<=p;i++){int sumn=0;
for (j=0;j<i;j++)
{
if (B[j]<B[i]&&dp[j]>sumn) sumn=dp[j];
}
dp[i]=sumn+B[i].height;
maxn=max(maxn,dp[i]);
}
printf("Case %d: maximum height = %d\n",k,maxn);

}
return 0;
}

基本就是N^2做法没啥好说的,排序把我坑了,应该只按照一条边来排序或者按S排序就ac,

由于我是按两条边排的wa几次>_<

hdu 1069 DAG加权的更多相关文章

  1. HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)

    HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...

  2. HDU 1069 dp最长递增子序列

    B - Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I6 ...

  3. HDU 1069&&HDU 1087 (DP 最长序列之和)

    H - Super Jumping! Jumping! Jumping! Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format: ...

  4. HDU 1069 Monkey and Banana(二维偏序LIS的应用)

    ---恢复内容开始--- Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  5. 怒刷DP之 HDU 1069

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  6. HDU 1069 Monkey and Banana (DP)

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  7. (最大上升子序列)Monkey and Banana -- hdu -- 1069

    http://acm.hdu.edu.cn/showproblem.php?pid=1069      Monkey and Banana Time Limit:1000MS     Memory L ...

  8. hdu 1069 动规 Monkey and Banana

     Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

  9. HDU 1069—— Monkey and Banana——————【dp】

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

随机推荐

  1. 网站app原型设计工具:axure,Mockups,墨刀

    网站app原型设计工具:axure,Mockups,墨刀 Balsamiq Mockups 3 网站原型设计工具非常高效,非常简单,几分钟就能搞定比axure好用很多 墨刀 - 免费的移动应用原型与线 ...

  2. linux 判断文件最后更新时间 实现监控日志是否有输出功能

    linux 判断文件最后更新时间 实现监控日志是否有输出功能. 需求:监控log.txt日志文件,超过一分钟没输出内容就认为是停了,则自动启动程序. 用stat 可以看文件的更新时间stat -c % ...

  3. 利用构造函数对canvas里面矩形与扇形的绘制进行一个封装

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. HCNP学习笔记之IP地址、子网掩码、网关的关系

      0x00 概述 网络管理中的IP地址.子网掩码和网关是每个网管必须要掌握的基础知识,只有掌握它,才能够真正理解TCP/IP协议的设置. 以下我们就来深入浅出地讲解什么是子网掩码. IP地址的结构 ...

  5. 深入JAVA注解之属性注解

    项目目录结构 实体类: package org.guangsoft.annotation.entity; import java.lang.annotation.ElementType; import ...

  6. linux内核分析 第一周

    计算机是如何工作的 冯·诺依曼理论的要点是: 数字计算机的数制采用二进制:计算机应该按照程序顺序执行. 冯·诺依曼体系结构 根据冯·诺依曼体系结构构成的计算机,必须具有如下功能:把需要的程序和数据送至 ...

  7. luogu P3387 【模板】缩点

    题目 好久没法博客了 这次就水个板子题目吧 tarjan缩点之后重新建图 而且边权应该都是正的(要不我怎么能这么轻松水过去) 在新图上记忆化一下就好了 f[i] 表示 开头选i这个点 的 路径最大值 ...

  8. 51NOD 1099 任务执行顺序

    来源:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1099 前天没睡好 昨天做题闷闷沉沉的 好多一眼题 都瞎做了 这题今 ...

  9. BZOJ2654: tree 二分答案+最小生成树

    Description 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. Input 第一行V,E,need分别表示点数,边数和需要的白色 ...

  10. Unity3D学习笔记(十二):2D模式和异步资源加载

    2D模式和3D模式区别:背景纯色,摄像机2D,没有深度轴 精灵图片设置 Normal map,法线贴图,更有立体感 Sprite (2D and UI),2D精灵贴图,有两种用途 1.当做UI贴图 2 ...