(1)C4.5算法的特点为:

输入变量(自变量):为分类型变量或连续型变量。

输出变量(目标变量):为分类型变量。

连续变量处理:N等分离散化。

树分枝类型:多分枝。

分裂指标:信息增益比率gain ratio(分裂后的目标变量取值变异较小,纯度高)

前剪枝:叶节点数是否小于某一阈值。

后剪枝:使用置信度法和减少-误差法。

(2)CART算法的特点为:

输入变量(自变量):为分类型变量或连续型变量。

输出变量(目标变量):为分类型变量(或连续型:回归分析)

连续变量处理:N等分离散化。

树分枝类型:二分枝。

分裂指标:gini增益(分裂后的目标变量取值变异较小,纯度高)。

前剪枝:maxdepth,minsplit,minbucket,mincp

后剪枝:使用最小代价复杂度剪枝法(MCCP)

(3)条件推理决策树(CHAID,QUEST)算法的特点为:

输入变量(自变量):为分类变量或连续型变量。

输出变量(目标变量):为分类型变量(或连续型:回归分析)。

连续变量处理:N等分离散化。

树分枝类型:二分枝(以party包中的ctree函数为例)。

分裂指标:独立性检验和相关性(分裂后自变量与目标变量的相关性)

------------------------------------------------------------------------------------

补充:随机森林算法介绍

随机森林是一种专门为决策树分类器设计的优化方法。它综合了多棵决策树模型的预测结果,其中的每棵树都是基于样本的一个独立集合的值产生的。

随机森林算法的一般步骤为:首先固定概率分布,从原始训练集中可重复地选取N个样本形成t个子训练集,然后使用这t个子训练集产生t棵决策树。最后把这t棵决策树综合组成一棵决策树。

在R语言中,基于CART算法的随机森林算法所涉及的函数是rpart包的randomForest函数,基于条件推理决策树算法的随机森林算法所涉及的函数是party包的cforest函数。

一般来说,随机森林算法的效果要比一般的决策树均好很多。

-------------------------------------------------------------------------------------

装袋算法与随机森林相对而言会生成多个树模型,再进行组合预测,其效果远大于单个树模型。装袋算法(bagging)采取自助法的思路,从样本中随机抽样,形成多个训练样本,生成多个树模型。然后以多数投票的方式来预测结果。随机森林则(randomForest)更进一步,不仅对样本进行抽样,还对变量进行抽样。

决策树模型比较:C4.5,CART,CHAID,QUEST的更多相关文章

  1. 决策树模型 ID3/C4.5/CART算法比较

    决策树模型在监督学习中非常常见,可用于分类(二分类.多分类)和回归.虽然将多棵弱决策树的Bagging.Random Forest.Boosting等tree ensembel 模型更为常见,但是“完 ...

  2. 机器学习算法总结(二)——决策树(ID3, C4.5, CART)

    决策树是既可以作为分类算法,又可以作为回归算法,而且在经常被用作为集成算法中的基学习器.决策树是一种很古老的算法,也是很好理解的一种算法,构建决策树的过程本质上是一个递归的过程,采用if-then的规 ...

  3. R_针对churn数据用id3、cart、C4.5和C5.0创建决策树模型进行判断哪种模型更合适

    data(churn)导入自带的训练集churnTrain和测试集churnTest 用id3.cart.C4.5和C5.0创建决策树模型,并用交叉矩阵评估模型,针对churn数据,哪种模型更合适 决 ...

  4. 机器学习总结(八)决策树ID3,C4.5算法,CART算法

    本文主要总结决策树中的ID3,C4.5和CART算法,各种算法的特点,并对比了各种算法的不同点. 决策树:是一种基本的分类和回归方法.在分类问题中,是基于特征对实例进行分类.既可以认为是if-then ...

  5. 决策树 ID3 C4.5 CART(未完)

    1.决策树 :监督学习 决策树是一种依托决策而建立起来的一种树. 在机器学习中,决策树是一种预测模型,代表的是一种对象属性与对象值之间的一种映射关系,每一个节点代表某个对象,树中的每一个分叉路径代表某 ...

  6. C4.5,CART,randomforest的实践

    #################################Weka-J48(C4.5)################################# ################### ...

  7. ML——决策树模型

    决策树模型 优点:高效简单.易于理解,可以处理不相关特征. 缺点:容易过拟合,训练集在特征上是完备的 决策树过程:特征选择.划分数据集.构建决策树.决策树剪枝 决策树选择最优的划分特征,将数据集按照最 ...

  8. ID3\C4.5\CART

    目录 树模型原理 ID3 C4.5 CART 分类树 回归树 树创建 ID3.C4.5 多叉树 CART分类树(二叉) CART回归树 ID3 C4.5 CART 特征选择 信息增益 信息增益比 基尼 ...

  9. chapter02 三种决策树模型:单一决策树、随机森林、GBDT(梯度提升决策树) 预测泰坦尼克号乘客生还情况

    单一标准的决策树:会根每维特征对预测结果的影响程度进行排序,进而决定不同特征从上至下构建分类节点的顺序.Random Forest Classifier:使用相同的训练样本同时搭建多个独立的分类模型, ...

随机推荐

  1. 细说OC中的load和initialize方法

    OC中有两个特殊的类方法,分别是load和initialize.本文总结一下这两个方法的区别于联系.使用场景和注意事项.Demo可以在我的Github上找到--load和initialize,如果觉得 ...

  2. php最新微信扫码在线支付接口。ecshop和shopex,shopnc下完美无错

    最近为客户的一个在线商城做了一个微信扫码在线支付的接口.跟大家分享一下. 1 首先可以模仿其他的接口,比如支付宝,财付通等的接口,构建模块功能文件和语言文件.2 微信提供2种扫码方式,大家可以根据自己 ...

  3. FPGA中将十进制数在数码管中显示(verilog版)--二进制转换为BCD码

    这周有朋友问怎样在fpga中用数码管来显示一个十进制数,比如1000.每个数码管上显示一位十进制数.如果用高级语言来分离各位,只需要分别对该数做1000,100,10对应的取商和取余即可分离出千百十个 ...

  4. DOM的发展,DOM0,DOM1,DOM2,DOM3

    Documentc Object Model文档对象模型是针对XML但经过扩展用于HTML的应用程序接口(API Application programming Interface).DOM把整个界面 ...

  5. 在github上搭建免费的博客

    github好多年前,大家都开始玩啦,我这个菜鸟近几年才开始.github不仅可以管理项目,还可以搭建博客.技术人员,一般用的博客为博客园,CSDN多一些.看到朋友们都弄一个,我也开始弄起来,先找点资 ...

  6. window下安装mysqldb模块(虚拟环境)

    因为在虚拟环境下安装mysql-python走了许多弯路,各种环境问题,特此记录 直接使用pip安装mysql-python会报错 pip install MySQL-python 可以直接选择非虚拟 ...

  7. 什么是体数据可视化(Volume data visualization)?及体绘制的各种算法和技术的特点?

    该文对体数据进行综述,并介绍了体数据的各种算法和技术的特点. 前言 由于3D数据采集领域的高速发展,以及在具有交互式帧率的现代化工作站上执行高级可视化的可能性,体数据的重要性将继续迅速增长. 数据集可 ...

  8. centos下的activemq的配置及PHP的使用

    一.安装JDK 1.下载JDK(官网:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.ht ...

  9. hdu1269强连通分量入门题

    https://vjudge.net/contest/156688#problem 为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<= ...

  10. TP5常用命令符操作

    ThinkPHP5常用命令符操作   1. 模块自动生成指令:   默认会读取应用目录application下面的build.php作为自动   生成的定义文件,如果你的定义文件位置不同,则需要使用 ...