windows 本地构建hadoop-spark运行环境(hadoop-2.6, spark2.0)
- 下载hadoop
- http://hadoop.apache.org/releases.html --> http://mirrors.tuna.tsinghua.edu.cn/apache/hadoop/common/hadoop-2.6.5/hadoop-2.6.5.tar.gz
- 安装hadoop,配置HADOOP_HOME, 把${HADOOP_HOME}/bin放到path
- 下载spark
- http://spark.apache.org/downloads.html --> https://d3kbcqa49mib13.cloudfront.net/spark-2.0.2-bin-hadoop2.6.tgz 注意与hadoop版本匹配
- 安装,配置SPARK_HOME,把${SPARK_HOME}/bin放到path
- 在运行spark程序时,会报找不到 winutils.exe
- 下载 https://github.com/srccodes/hadoop-common-2.2.0-bin.git 放到${HADOOP_HOME}/bin下
- 运行时设置本地运行即可
- spark样例:
LocalSparkContext.scala
- import org.apache.spark.{SparkConf, SparkContext}
- import org.scalatest._
- trait LocalSparkContext extends BeforeAndAfterAll {
- self: Suite =>
- @transient var sc: SparkContext = _
- override def beforeAll() {
- val conf = new SparkConf()
- .setMaster("local[2]")
- .setAppName("test")
- sc = new SparkContext(conf)
- }
- override def afterAll() {
- if (sc != null) {
- sc.stop()
- }
- }
- }
SparkWCSuit.scala
- import org.apache.spark.rdd.RDD
- import org.apache.spark.sql.{Row, SQLContext}
- import org.apache.spark.util.LongAccumulator
- import org.scalatest.FunSuite
- import tool.LocalSparkContext
- import algos.{MergedPCtr, PCtrUtils}
- class SparkWCSuit extends FunSuite with LocalSparkContext {
- //rdd wordCount
- test("test rdd wc") {
- sc.setLogLevel("ERROR")
- val rdd = sc.makeRDD(Seq("a", "b", "b"))
- val res = rdd.map((_, 1)).reduceByKey(_ + _).collect().sorted
- assert(res === Array(("a", 1), ("b", 2)))
- }
- }
build.sbt
- name := "doc_rank"
- version := "1.0"
- scalaVersion := "2.10.5"
- libraryDependencies += "org.apache.spark" % "spark-core_2.10" % "2.0.2"
- libraryDependencies += "org.apache.spark" % "spark-mllib_2.10" % "2.0.2"
- libraryDependencies += "commons-cli" % "commons-cli" % "1.2"
- libraryDependencies ++= Seq(
- "org.scalanlp" %% "breeze" % "0.11.2",
- "org.scalanlp" %% "breeze-natives" % "0.11.2",
- "org.scalanlp" %% "breeze-viz" % "0.11.2"
- )
- libraryDependencies ++= Seq(
- "org.apache.hadoop" % "hadoop-core" % "2.6.0-mr1-cdh5.4.4",
- "org.apache.hbase" % "hbase-client" % "1.0.0-cdh5.4.4",
- "org.apache.hbase" % "hbase-common" % "1.0.0-cdh5.4.4",
- "org.apache.hbase" % "hbase-server" % "1.0.0-cdh5.4.4",
- "org.apache.hbase" % "hbase-protocol" % "1.0.0-cdh5.4.4"
- )
- resolvers += "Akka Repository" at "http://repo.akka.io/releases/";
- resolvers += "cloudera-repo-releases" at "https://repository.cloudera.com/artifactory/repo/";
- resolvers ++= Seq(
- "Sonatype Snapshots" at "https://oss.sonatype.org/content/repositories/snapshots/";,
- "Sonatype Releases" at "https://oss.sonatype.org/content/repositories/releases/";
- )
- hadoop样例
目录结构:src/├── main│ ├── java│ │ ├── io│ │ │ └── longwind│ │ │ └── mapreduce│ │ │ ├── main│ │ │ │ └── Main.java│ │ │ ├── mapreduce│ │ │ │ └── InfoidUniquer.java│ │ │ └── utils│ │ │ ├── Constant.java│ │ │ └── HadoopUtils.java│ │ └── org│ │ └── apache│ │ └── hadoop│ │ ├── io│ │ │ └── nativeio│ │ │ └── NativeIO.java│ │ └── mapred│ │ ├── ClientCache.java│ │ ├── ClientServiceDelegate.java│ │ ├── NotRunningJob.java│ │ ├── ResourceMgrDelegate.java│ │ ├── YarnClientProtocolProvider.java│ │ └── YARNRunner.java│ └── resources│ └── log4j.properties└── test├── java│ └── test└── resources└── log4j.propertiespom.xml中关键依赖<dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>2.6.0-cdh5.4.4</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-mapreduce-client-core</artifactId><version>2.6.0-cdh5.4.4</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-mapreduce-client-common</artifactId><version>2.6.0-cdh5.4.4</version></dependency>代码方面:上面目录结构显示的org.apache.hadoop.* 那些是从hadoop源码包里拷出来的,注意是2.6.0-cdh5.4.4版本的程序运行起来报错access0,如果是NativeIO.java 那应该是权限问题,需要手动修改NativeIO.java 中的public static boolean access(String path, AccessRight desiredAccess)throws IOException {return true;//修改后//return access0(path, desiredAccess.accessRight());//修改前}
- 平野大荒 http://www.cnblogs.com/tq03/p/5101916.html --windows上的mapreduce运行环境
- 在前进的路上 http://blog.csdn.net/congcong68/article/details/42043093 -- access0 问题解决
- xuweimdm http://blog.csdn.net/u011513853/article/details/52865076 -- spark在windows上
windows 本地构建hadoop-spark运行环境(hadoop-2.6, spark2.0)的更多相关文章
- Spark简单介绍,Windows下安装Scala+Hadoop+Spark运行环境,集成到IDEA中
一.前言 近几年大数据是异常的火爆,今天小编以java开发的身份来会会大数据,提高一下自己的层面! 大数据技术也是有很多: Hadoop Spark Flink 小编也只知道这些了,由于Hadoop, ...
- [phvia/dkc] Docker Compose 快速构建(LNMP+Node)运行环境
快速构建(LNMP+Node)运行环境. dkc 在此作为 docker-compose 的缩写,你可以理解为 alias dkc=docker-compose 准备 安装 docker 选择1) 从 ...
- 【原创干货】大数据Hadoop/Spark开发环境搭建
已经自学了好几个月的大数据了,第一个月里自己通过看书.看视频.网上查资料也把hadoop(1.x.2.x).spark单机.伪分布式.集群都部署了一遍,但经历短暂的兴奋后,还是觉得不得门而入. 只有深 ...
- Hadoop之运行环境搭建
一.虚拟机环境准备 1.克隆虚拟机 2.修改克隆虚拟机静态IP 3.修改主机名 4.关闭防火墙 5.创建hadoop用户 6.配置hadoop用户具有root权限 7.在/opt 目录下创建文件夹 1 ...
- 【Spark笔记】Windows10 本地搭建单机版Spark开发环境
0x00 环境及软件 1.系统环境 OS:Windows10_x64 专业版 2.所需软件或工具 JDK1.8.0_131 spark-2.3.0-bin-hadoop2.7.tgz hadoop-2 ...
- Amazon EMR(Elastic MapReduce):亚马逊Hadoop托管服务运行架构&Hadoop云服务之战:微软vs.亚马逊
http://s3tools.org/s3cmd Amazon Elastic MapReduce (Amazon EMR)简介 Amazon Elastic MapReduce (Amazon EM ...
- Windows下单机安装Spark开发环境
机器:windows 10 64位. 因Spark支持java.python等语言,所以尝试安装了两种语言环境下的spark开发环境. 1.Java下Spark开发环境搭建 1.1.jdk安装 安装o ...
- Apache Spark源码走读之12 -- Hive on Spark运行环境搭建
欢迎转载,转载请注明出处,徽沪一郎. 楔子 Hive是基于Hadoop的开源数据仓库工具,提供了类似于SQL的HiveQL语言,使得上层的数据分析人员不用知道太多MapReduce的知识就能对存储于H ...
- Hive on Spark运行环境搭建
Hive是基于Hadoop的开源数据仓库工具,提供了类似于SQL的HiveQL语言,使得上层的数据分析人员不用知道太多MapReduce的知识就能对存储于Hdfs中的海量数据进行分析.由于这一特性而收 ...
随机推荐
- MySQL (二)-- 数据类型(列类型)、数值类型、 小数类型、 时间日期类型、 字符串类型 、 MySQL记录长度、列属性
1 数据类型(列类型) 所谓的数据类型:对数据进行统一的分类,从系统的角度出发是为了能够使用统一的方式进行管理,更好的利用有限的空间. SQL中将数据类型分成了三大类: 2 数值类型 数值类型数据:都 ...
- RobotFramework自动化测试框架-移动手机自动化测试Input Text和Click Button关键字的使用
Input Text和Click Button Input Text 关键字一般用来给输入框进行输入操作,该关键字接收两个参数[ locator | text ]. 示例1:启动安卓手机上一个APP的 ...
- 团队作业8----第二次项目冲刺(Beta阶段) 第一天
BETA阶段冲刺第一天 1.开了个小会议 2.每个人的工作 (1) 昨天已完成的工作: 今天是第一天,所以是新的开始. (2) 今天计划完成的工作: (3) 工作中遇到的困难: 由于有新的成员加入,默 ...
- 201521123097 《JAVA程序设计》第七周学习总结
1. 本周学习总结 总结 2. 书面作业 1.ArrayList代码分析 1.1 解释ArrayList的contains源代码 源代码: public boolean contains(Object ...
- 201521123016 《Java程序设计》第3周学习总结
1. 本周学习总结 2. 书面作业 2.1代码阅读 public class Test1 { private int i = 1;//这行不能修改 private static int j = 2; ...
- 201521123038 《Java程序设计》 第二周学习总结
201521123038 <Java程序设计> 第二周学习总结 1.本章学习总结 学会在Java程序中使用函数,使程序层次更清晰 使用StringBuilder编写代码,减少内存空间的占用 ...
- 201521123121 《Java程序设计》第2周学习总结
1. 本周学习总结 通过分析数据所需要占用的内存长度来决定java的类型,其中主要分为基本类型和长类型. 基本类型主要分为五个方面:整数(short=2字节:int=4字节:long=8字节):字节( ...
- 201521123109《java程序设计》第九周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 2. 书面作业 本次PTA作业题集异常 1. 常用异常 题目5-1 1.1 截图你的提交结果(出现学号) 1.2 自 ...
- 201521123121 《Java程序设计》第9周学习总结
1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 2. 书面作业 本次PTA作业题集异常 常用异常 题目5-1 1.1 截图你的提交结果(出现学号) 1.2 自己以前 ...
- PHPStorm调试PHP代码~实际操作+mark~~
因为wamp自己已经下载了xdebug,只要配置开启就行了. 1. 配置php.ini(有就打开注释,没有就加上) XDEBUG Extension[xdebug]zend_extension =&q ...