题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604

Queuing

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4428    Accepted Submission(s): 1961

Problem Description
Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time. 

  Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.
Your task is to calculate the number of E-queues mod M with length L by writing a program.
 
Input
Input a length L (0 <= L <= 10 6) and M.
 
Output
Output K mod M(1 <= M <= 30) where K is the number of E-queues with length L.
 
Sample Input
3 8
4 7
4 8
 
Sample Output
6
2
1
 
Author
WhereIsHeroFrom
 
Source
 
 
注释:在思考一个递推公式的时候几乎都可以分类讨论一下然后写成一个矩阵乘的形式,然后递推得到结果。
 
题意:

用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1); 
如果最后一个是f那么这个还无法推出结果,那么往前再考虑一位:那么后三位可能是:mmf, fmf, mff, fff,其中fff和fmf不满足题意所以我们不考虑,但是如果是 
mmf的话那么前n-3可以找满足条件的即:f(n-3);如果是mff的话,再往前考虑一位的话只有mmff满足条件即:f(n-4) 
所以f(n)=f(n-1)+f(n-3)+f(n-4),递推会跪,可用矩阵快速幂 
构造一个矩阵。

用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1); 
如果最后一个是f那么这个还无法推出结果,那么往前再考虑一位:那么后三位可能是:mmf, fmf, mff, fff,其中fff和fmf不满足题意所以我们不考虑,但是如果是 
mmf的话那么前n-3可以找满足条件的即:f(n-3);如果是mff的话,再往前考虑一位的话只有mmff满足条件即:f(n-4) 
所以f(n)=f(n-1)+f(n-3)+f(n-4),递推会跪,可用矩阵快速幂 
构造一个矩阵: 

 //快速幂矩阵
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct Mat
{
int mat[][];
};
int m;
Mat operator *(Mat a, Mat b)
{
Mat c;
memset(c.mat,,sizeof(c.mat));
int i, j, k;
//这儿的顺序按照
for(i = ; i < ; i++)
for(j = ; j < ; j++)
for(k = ; k < ; k++)
c.mat[i][j] = (c.mat[i][j] + a.mat[i][k]*b.mat[k][j])%m;
return c;
}
Mat multi(int n)//计算一个已知矩阵的n次方%m
{
Mat ans;
for(int i = ; i < ; i++)
{
for(int j = ; j < ; j++)
{
if(i==j)
ans.mat[i][j] = ;
else ans.mat[i][j] = ;
} }
Mat a;
memset(a.mat,,sizeof(a.mat));
a.mat[][] = a.mat[][] = a.mat[][] = a.mat[][] = a.mat[][] = a.mat[][] = ; while(n>)
{
if(n&) ans = ans*a;
a = a*a;
n>>=;
}
return ans;
}
int main()
{
int n;
while(~scanf("%d%d",&n,&m))
{
if(n==) printf("%d\n",%m);
else if(n==) printf("%d\n",%m);
else if(n==) printf("%d\n",%m);
else if(n==) printf("%d\n",%m);
else
{
Mat t;
t = multi(n-);
int sol = ((t.mat[][]*)%m+(t.mat[][]*)%m+(t.mat[][]*)%m+(t.mat[][]*)%m)%m;
printf("%d\n",sol);
}
}
return ;
}

hdu_2604Queuing(快速幂矩阵)的更多相关文章

  1. 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式

    矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d     ...

  2. Number Sequence(快速幂矩阵)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1005 Number Sequence Time Limit: 2000/1000 MS (Java/O ...

  3. 【bzoj4870】[Shoi2017]组合数问题 dp+快速幂/矩阵乘法

    题目描述 输入 第一行有四个整数 n, p, k, r,所有整数含义见问题描述. 1 ≤ n ≤ 10^9, 0 ≤ r < k ≤ 50, 2 ≤ p ≤ 2^30 − 1 输出 一行一个整数 ...

  4. 快速幂 & 矩阵快速幂

    目录 快速幂 实数快速幂 矩阵快速幂 快速幂 实数快速幂 普通求幂的方法为 O(n) .在一些要求比较严格的题目上很有可能会超时.所以下面来介绍一下快速幂. 快速幂的思想其实是将数分解,即a^b可以分 ...

  5. jiulianhuan 快速幂--矩阵快速幂

    题目信息: 1471: Jiulianhuan 时间限制: 1 Sec  内存限制: 128 MB 提交: 95  解决: 22 题目描述 For each data set in the input ...

  6. hiho #1143 : 骨牌覆盖问题·一 (运用快速幂矩阵)

    #1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题:我们有一个2xN的长条形棋盘,然 ...

  7. 【数论】 快速幂&&矩阵快速幂

    首先复习快速幂 #include<bits/stdc++.h> using namespace std; long long power(long long a,long long b,l ...

  8. 整数快速乘法/快速幂+矩阵快速幂+Strassen算法

    快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c  二.矩 ...

  9. POJ 3734 Blocks(矩阵快速幂+矩阵递推式)

    题意:个n个方块涂色, 只能涂红黄蓝绿四种颜色,求最终红色和绿色都为偶数的方案数. 该题我们可以想到一个递推式 .   设a[i]表示到第i个方块为止红绿是偶数的方案数, b[i]为红绿恰有一个是偶数 ...

随机推荐

  1. PHP中public,private,protected,abstract等关键字用法详解

    PHP中常用的关键字 在PHP中包含了很多对函数和类进行限制的关键字,常用的通常有abstract,final,interface,public,protected,private,static等等, ...

  2. go defer (go延迟函数)

    go defer (go延迟函数) Go语言的defer算是一个语言的新特性,至少对比当今主流编程语言如此.根据GO LANGUAGE SPEC的说法: A "defer" sta ...

  3. 瞎j8封装第二版之数据层的封装

    看了以前写的代码,对就是下面这个 手把手封装数据层之DataUtil数据库操作的封装 觉得以前写的代码好烂啊!!!,重新理了一下思路,写得更规范和简练,应该效率也会高很多,用了一下下午写的连接池(半废 ...

  4. 解决mysql漏洞 Oracle MySQL Server远程安全漏洞(CVE-2015-0411)

    有时候会检测到服务器有很多漏洞,而大部分漏洞都是由于服务的版本过低的原因,因为官网出现漏洞就会发布新版本来修复这个漏洞,所以一般情况下,我们只需要对相应的软件包进行升级到安全版本即可. 通过查阅官网信 ...

  5. @NotEmpty、@NotBlank、@NotNull的区别

    @NotEmpty 用在集合类上面  @NotBlank 用在String上面  @NotNull 用在基本类型上 只有简单的结果,但是再更具体一点的内容就搜不到了,所以去看了看源码,发现了如下的注释 ...

  6. Python学习_13_继承和元类

    继承 继承的含义就是子类继承父类的命名空间,子类中可以调用父类的属性和方法,由于命名空间的查找方式,当子类中定义和父类同名属性或者方法时,子类的实例调用的是子类中的属性,而不是父类,这就形成了pyth ...

  7. 部署Tomcat服务时,解决Cannot invoke Tomcat Manager 异常

    最近,在使用Jenkins对工程一键部署的时候,出现调用Tomcat Manager 异常,对其解决方案特记于次. 异常信息 可能存在的异常:(1)Cannot invoke Tomcat manag ...

  8. TS Eslint规则说明

    ,//禁止使用alert confirm prompt ,//禁止使用数组构造器 ,//禁止使用按位运算符 ,//禁止使用arguments.caller或arguments.callee ,//禁止 ...

  9. iOS中的zxing集成步骤

    参照网上各大神文章,自己总结了下如下,欢迎大家指正与交流!(主参照:http://blog.csdn.net/brokge/article/details/9045629) 1. 到 github下载 ...

  10. Python:名片管理系统

    字符串和列表学完, 自己试着写了一个非常简单的名片管理系统, 新萌尝试, 大佬们不要喷, 修改名片的功能我偷了个懒, 因为我不知道怎么通过定义下标,然后通过下标来修改列表内的字符串 我的思路是,把用户 ...