$ POJ3741Raid $ (平面最近点对)



$ solution: $

有两种点,现在求最近的平面点对。这是一道分治板子,但是当时还是想了很久,明明知道有最近平面点对,但还是觉得有点不对劲。基本算法专题出最近平面点对?怎么感觉我 $ Noip $ 凉了? 这题不会是个坑吧。。。。

嗯,不瞎扯了。来回顾一下分治求平面点对的过程,首先将点按横坐标排序,然后整个区间不断往下二分,回溯的时候归并排序(这其实我来再写一次题解的原因,以前写的都是快排,但必须承认归并的复杂度才是最稳最准的)。我们将两个区间合并时,从中间点想外扩 $ d $ 的距离,这个距离内的点才有可能更新答案,而且这个距离里的每个点都不会计算多次,这个是有证明的 。然后我们暴力计算即可。



$ code: $

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set> #define ll long long
#define db double
#define rg register int using namespace std; int t,n; struct su{
db x,y;
bool z;
inline bool operator <(const su &yy){
return x<yy.x;
}
}a[200005],b[200005]; inline int qr(){
register char ch; register bool sign=0; rg res=0;
while(!isdigit(ch=getchar()))if(ch=='-')sign=1;
while(isdigit(ch))res=res*10+(ch^48),ch=getchar();
if(sign)return -res; else return res;
} inline db dis(const su &x,const su &y){
return pow((x.x-y.x)*(x.x-y.x)+(x.y-y.y)*(x.y-y.y),0.5);
} inline db ask(int sl,int sr){
if(sl==sr)return 1e9;
rg mid=(sl+sr)>>1;
db d=min(ask(sl,mid),ask(mid+1,sr));
rg l=sl,r=mid+1,tt=sl;
while(l<=mid&&r<=sr)
if(a[l].y<a[r].y)b[tt++]=a[l++];
else b[tt++]=a[r++];
while(l<=mid)b[tt++]=a[l++];
while(r<=sr)b[tt++]=a[r++];
for(rg i=r=sl;i<tt;++i){ a[i]=b[i];
if(fabs(b[i].x-b[mid].x)>d)continue;
while(r<=sr&&b[r].y-b[l].y<=d)++r;
for(rg j=i+1;j<r;++j)
if(b[j].z!=b[i].z&&fabs(b[j].x-b[mid].x)<=d)//这里不能少
d=min(d,dis(b[i],b[j]));
}return d;
} int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
t=qr();
while(t--){
n=qr();
for(rg i=1;i<=n;++i)
a[i].x=qr(),a[i].y=qr(),a[i].z=1;
for(rg i=n+1;i<=n<<1;++i)
a[i].x=qr(),a[i].y=qr();
sort(a+1,a+2*n+1);
printf("%.3lf\n",ask(1,2*n));
}
return 0;
}

POJ 3741 Raid (平面最近点对)的更多相关文章

  1. 『Raid 平面最近点对』

    平面最近点对 平面最近点对算是一个经典的问题了,虽然谈不上是什么专门的算法,但是拿出问题模型好好分析一个是有必要的. 给定\(n\)个二元组\((x,y)\),代表同一平面内的\(n\)个点的坐标,求 ...

  2. POJ-3714 Raid 平面最近点对

    题目链接:http://poj.org/problem?id=3714 分治算法修改该为两个点集的情况就可以了,加一个标记... //STATUS:C++_AC_2094MS_4880KB #incl ...

  3. 【POJ3714】Raid:平面最近点对

    Description After successive failures in the battles against the Union, the Empire retreated to its ...

  4. poj3714 Raid(分治求平面最近点对)

    题目链接:https://vjudge.net/problem/POJ-3714 题意:给定两个点集,求最短距离. 思路:在平面最近点对基础上加了个条件,我么不访用f做标记,集合1的f为1,集合2的f ...

  5. $Poj3714/AcWing\ Raid$ 分治/平面最近点对

    $AcWing$ $Sol$ 平面最近点对板子题,注意要求的是两种不同的点之间的距离. $Code$ #include<bits/stdc++.h> #define il inline # ...

  6. POJ 3714 Raid

    Description After successive failures in the battles against the Union, the Empire retreated to its ...

  7. 计算几何 平面最近点对 nlogn分治算法 求平面中距离最近的两点

    平面最近点对,即平面中距离最近的两点 分治算法: int SOLVE(int left,int right)//求解点集中区间[left,right]中的最近点对 { double ans; //an ...

  8. HDU-4631 Sad Love Story 平面最近点对

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4631 数据是随机的,没有极端数据,所以可以分段考虑,最小值是一个单调不增的函数,然后每次分治算平面最近 ...

  9. HDU1007--Quoit Design(平面最近点对)

    Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...

随机推荐

  1. 网络协议之FTP协议

    FTP(File Transfer Protocol) 协议文档:RFC 959 1.1 FTP协议介绍 FTP协议基于TCP/IP协议实现,处于应用层. FTP协议为C/S架构,每一次FTP连接,命 ...

  2. 八、RF的内置变量

    1.表示“空”的变量 ${EMPTY} 空 适用输入空的案例 2.表示“空格”的变量 ${SPACE} 空格,如果是需要5个空格可以这样写${SPACE*5} 3.目录的绝对路径 ${CURDIR} ...

  3. CAN诊断学习

    汽车CAN总线有动力总成PCAN,底盘控制CCAN,整车控制BCAN,娱乐ECAN,诊断DCAN五种. CAN诊断,即是对CAN网络中各节点,各CAN总线,网关的故障进行检查与修复. 统一诊断服务(U ...

  4. CSS-W3School:CSS table-layout 属性

    ylbtech-CSS-W3School:CSS table-layout 属性 1.返回顶部 1. CSS table-layout 属性 CSS 参考手册 实例 设置表格布局算法: table { ...

  5. C# Setting.settings . 用法 2 使用配置文件(.settings、.config)存储应用程序配置

    引言 我不知大家早先是如何保存应用程序配置,以备下次打开时使用的,反正我开始学.Net的时候就去研究序列化,以二进制或XML格式的序列化来保存应用程序配置.这样每次都要建立单独的配置类,并书写读写配置 ...

  6. 中国MOOC_面向对象程序设计——Java语言_期末考试编程题_1细胞自动机

    期末考试编程题 返回   这是期末考试的编程题 温馨提示: 1.本次考试属于Online Judge题目,提交后由系统即时判分. 2.学生可以在考试截止时间之前提交答案,系统将取其中的最高分作为最终成 ...

  7. springboot文件上传报错

    异常信息: org.springframework.web.multipart.MultipartException: Could not parse multipart servlet reques ...

  8. HTML真是好东西!

    HTML真是好东西! 学习HTML已经两天了,别小看这两天哦,这短短的两天估计要比学校的四周还要长.不仅有教学,还有同学与老师之间的交流,最重要的是自己上机实践的过程.在这个过程中,不仅知道了在HTM ...

  9. 定制属于你自己的ViewEngine(一套逻辑多套UI)

    ASP.NET MVC出来这么久了,心中却又很多的疑惑:为什么所有的View都要放在Views目录下? 为什么Shared文件夹下面的页面可以被共享? 为什么Page既可以是*.cshtml,也可以是 ...

  10. CentOS7.查看进程占用端口情况

    1.命令:"netstat -lntp" 2.没有改命令的话,需要安装 net-tools工具:"yum install net-tools" 3. 4. 5.