Leetcode 4. Median of Two Sorted Arrays(中位数+二分答案+递归)
There are two sorted arrays nums1 and nums2 of size m and n respectively.
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).
You may assume nums1 and nums2 cannot be both empty.
Example 1:
nums1 = [1, 3]
nums2 = [2] The median is 2.0
Example 2:
nums1 = [1, 2]
nums2 = [3, 4] The median is (2 + 3)/2 = 2.5 思路:
中位数,其实就是找到第k个大小的元素的特例。在单数组中实现方式简单,关键是如何在两个数组中找到第k大的元素。难就难在要在两个未合并的有序数组之间使用二分法,这里我们需要定义一个函数来找到第K个元素,由于两个数组长度之和的奇偶不确定,因此需要分情况来讨论,对于奇数的情况,直接找到最中间的数即可,偶数的话需要求最中间两个数的平均值。下面重点来看如何实现找到第K个元素,首先我们需要让数组1的长度小于或等于数组2的长度,那么我们只需判断如果数组1的长度大于数组2的长度的话,交换两个数组即可,然后我们要判断小的数组是否为空,为空的话,直接在另一个数组找第K个即可。还有一种情况是当K = 1时,表示我们要找第一个元素,只要比较两个数组的第一个元素,返回较小的那个即可。
首先假设数组A和B的元素个数都大于k/2,我们比较A[k/2-1]和B[k/2-1]两个元素,这两个元素分别表示A的第k/2小的元素和B的第k/2小的元素。这两个元素比较共有三种情况:>、<和=。如果A[k/2-1]大于B[k/2-1],则A[k/2-1]小于合并之后的第k小值。
证明也很简单,可以采用反证法。假设A[k/2-1]大于合并之后的第k小值,我们不妨假定其为第(k+1)小值。由于A[k/2-1]小于B[k/2-1],所以B[k/2-1]至少是第(k+2)小值。但实际上,在A中至多存在k/2-1个元素小于A[k/2-1],B中也至多存在k/2-1个元素小于A[k/2-1],所以小于A[k/2-1]的元素个数至多有k/2+ k/2-2,小于k,这与A[k/2-1]是第(k+1)的数矛盾。
同理当A[k / 2 - 1] > B[k / 2 -1]时存在类似的结论
当A[k / 2 - 1] = B[k / 2 -1]时,表示,在在A的k/2 -1之前已经有k/2 -1和数小于A[k / 2 -1],同理在B 之前也是一样的,所以此时已经找到了第k小的数,即这个相等的元素。
class Solution {
public:
double findKth(vector<int>& nums1, int p1, vector<int>& nums2, int p2, int k){
int len1 = nums1.size(), len2 = nums2.size();
if(len1-p1>len2-p2){
return findKth(nums2,p2,nums1,p1,k);
}
if(len1==p1){
return nums2[p2+k-];
}
if(k==){
return min(nums1[p1],nums2[p2]);
}
int l1 = min(k/ + p1,len1), l2 = p2 + k - l1 + p1;;
int max1 = nums1[l1-], max2 = nums2[l2-];
if(max1==max2) return max1;
else if(max1<max2){
return findKth(nums1,l1,nums2,p2,k-l1+p1);
}
else {
return findKth(nums1,p1,nums2,l2,k-l2+p2);
}
}
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int len1 = nums1.size(),len2 = nums2.size();
if((len1+len2)%==){
return (findKth(nums1,,nums2,,(len1+len2)/)+findKth(nums1,,nums2,,(len1+len2+)/))/;
}
else{
return findKth(nums1,,nums2,,(len1+len2+)/);
}
}
};
#下面这个代码思路完全一样,加了一些注释,是来自别人的博客,附上原地址,感谢大佬:https://www.cnblogs.com/mini-coconut/p/9066508.html 1 double findKth(vector<int> &nums1, int i, vector<int> &nums2, int j, int k)
{
// 首先需要让数组1的长度小于或等于数组2的长度
if (nums1.size() - i > nums2.size() - j) {
return findKth(nums2, j, nums1, i, k);
}
// 判断小的数组是否为空,为空的话,直接在另一个数组找第K个即可
if (nums1.size() == i) {
return nums2[j + k - ];
}
// 当K = 1时,表示我们要找第一个元素,只要比较两个数组的第一个元素,返回较小的那个即可
if (k == ) {
return min(nums1[i], nums2[j]);
}
int pa = min(i + k / , int(nums1.size())), pb = j + k - pa + i; if (nums1[pa - ] < nums2[pb - ]) {
return findKth(nums1, pa, nums2, j, k - pa + i);
}
else if (nums1[pa - ] > nums2[pb - ]) {
return findKth(nums1, i, nums2, pb, k - pb + j);
}
else {
return nums1[pa - ];
}
}
double findMedianSortedArrays(vector<int> A, vector<int> B) {
int sizeA = A.size(), sizeB = B.size();
if (sizeA <= && sizeB <= ) {
return ;
}
int total = sizeA + sizeB;
if (total % == ) {
return findKth(A, , B, , total / + );
}
else {
return (findKth(A, , B, , total / ) + findKth(A, , B, , total / + )) / ;
}
}
这里比较难理解的点是判断(nums1[pa - 1] < nums2[pb - 1])之后执行了return findKth(nums1, pa, nums2, j, k - pa + i);其实这个操作是因为目前nums1的分界线的值小于nums2分界线的值,那么证明nums1分界线以及前面的值都小于合并后的第k的值,也就是中位数。那么我们可以从这里开始,继续寻找第k-(pa-i)的值,直到两个值相等为止。
Leetcode 4. Median of Two Sorted Arrays(中位数+二分答案+递归)的更多相关文章
- Leetcode 4. Median of Two Sorted Arrays(二分)
4. Median of Two Sorted Arrays 题目链接:https://leetcode.com/problems/median-of-two-sorted-arrays/ Descr ...
- 【算法之美】求解两个有序数组的中位数 — leetcode 4. Median of Two Sorted Arrays
一道非常经典的题目,Median of Two Sorted Arrays.(PS:leetcode 我已经做了 190 道,欢迎围观全部题解 https://github.com/hanzichi/ ...
- LeetCode(3) || Median of Two Sorted Arrays
LeetCode(3) || Median of Two Sorted Arrays 题记 之前做了3题,感觉难度一般,没想到突然来了这道比较难的,星期六花了一天的时间才做完,可见以前基础太差了. 题 ...
- LeetCode 4 Median of Two Sorted Arrays (两个数组的mid值)
题目来源:https://leetcode.com/problems/median-of-two-sorted-arrays/ There are two sorted arrays nums1 an ...
- LeetCode 4. Median of Two Sorted Arrays & 归并排序
Median of Two Sorted Arrays 搜索时间复杂度的时候,看到归并排序比较适合这个题目.中位数直接取即可,所以重点是排序. 再来看看治阶段,我们需要将两个已经有序的子序列合并成一个 ...
- 第三周 Leetcode 4. Median of Two Sorted Arrays (HARD)
4. Median of Two Sorted Arrays 给定两个有序的整数序列.求中位数,要求复杂度为对数级别. 通常的思路,我们二分搜索中位数,对某个序列里的某个数 我们可以在对数时间内通过二 ...
- LeetCode 004 Median of Two Sorted Arrays
题目描述:Median of Two Sorted Arrays There are two sorted arrays A and B of size m and n respectively. F ...
- [LeetCode] 4. Median of Two Sorted Arrays 两个有序数组的中位数
There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two ...
- leetcode 4 : Median of Two Sorted Arrays 找出两个数组的中位数
题目: There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the ...
随机推荐
- 求一个集合S中m个元素的所有排列以及一个数组A的全排列—递归实现版完整代码
说明,本文全文代码均用dart语言实现. 求一个集合S中m个元素的所有排列情况,并打印,非常适合用递归的思路实现.本文给出了两种实现方法,一种是给定的填充排列数组长度是固定的,一种是可变长度的.两种方 ...
- 【Qt开发】如何将内存图像数据封装成QImage V1
如何将内存图像数据封装成QImage 当采用Qt开发相机数据采集软件时,势必会遇到采集内存图像并进行处理(如缩放.旋转)操作.如果能够将内存图像数据封装成QImage,则可以利用QImage强大的图像 ...
- 如何实现Django settings配置功能
首先研究Django的settings有何功能,1 提供了两个settings配置模块,一个是系统默认配置模块global_settings.py;和提供给用户自定义设置的settings模块sett ...
- uwsgi + nginx 部署python项目(一)
uWSGI uWSGI是一个Web服务器,它实现了WSGI协议.uwsgi.http等协议.Nginx中HttpUwsgiModule的作用是与uWSGI服务器进行交换. 要注意 WSGI / uws ...
- MyBatis逆向工程无效
在Taget目录下修改的东西无法逆向, 在源代码目录就可以
- STL: HDU1004Let the Balloon Rise
Let the Balloon Rise Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Oth ...
- django字段类型(Field types)介绍
字段类型(Field types) AutoField 它是一个根据 ID 自增长的 IntegerField 字段.通常,你不必直接使用该字段.如果你没在别的字段上指定主 键,Django 就会自动 ...
- Hadoop本地模式搭建
官方文档,不同版本修改url地址中的数字即可 http://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/Single ...
- 轮播图--js课程
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Python 通过dmidecode获取Linux服务器硬件信息
通过 dmidecode 命令可以获取到 Linux 系统的包括 BIOS. CPU.内存等系统的硬件信息,这里使用 python 代码来通过调用 dmidecode 命令来获取 Linux 必要的系 ...