[BZOJ 3509] [CodeChef] COUNTARI (FFT+分块)
[BZOJ 3509] [CodeChef] COUNTARI (FFT+分块)
题面
给出一个长度为n的数组,问有多少三元组\((i,j,k)\)满足\(i<j<k,a_j-a_i=a_k-a_j\)
\(n \leq 10^5, a_i \leq 30000\)
分析
记\(m=\max(a_i)\)
先做一点变形\(a_i+a_k=2a_j\).那么枚举j,把j左边的和右边的所有数字找出来,找出有哪些数字对的和为\(2a_j\)。
维护当前块左边每个数的出现次数cntl,,和右边块的出现次数cntr。
那么数字和为\(2a_j\)的方案数就是\(\sum_{i=0}^{2a_j} cntl(i)cntr(2a_j-i)\)
这是一个卷积的形式,可以FFT.令:
$A(x)=\sum_{i=0}^{m} cntl(i) x^i $
$B(x)=\sum_{i=0}^{m} cntr(i) x^i $
\(A*B\)的第\(2a_j\)项的系数就是答案.但是做n次FFT的复杂度是\(O(n^2 \log n)\),显然是跑不过去的.
我们要平衡一下复杂度,容易想到分块。设块大小为T
i,j,k均不在同一个块的情况
我们枚举j在第几个块,从左到右扫描第2~n-1个块,每块把左边和右边FFT卷积。枚举块内的每个数x,和为\(2x\)的方案数就是卷积结果里第\(2x\)项的系数.
时间复杂度\(O(\frac{n}{B} \times m \log m)\)
i,j,k至少有2个在同一个块的情况
直接暴力从小到大在块内枚举\(k,j(j<k)\).然后讨论j在k前还是在k后。同样维护2个数组cntl表示当前块前面的数的出现次数,cntr表示k后面的数的个数。
如果i在j前,那么答案就是\(cntl[a_j*2-a_k]\)
如果i在k后,那么答案就是\(cntr[a_k*2-a_j]\)
注意到cntl不包含当前块,而cntr包含当前块,这样\(i,j,k\)在同一个块的情况只会被算1次
时间复杂度\(O(\frac{n}{B} \times B \times B)=O(nB)\)
总时间复杂度\(O(nB+\frac{n}{B}m\log m)\)
根据基本不等式,\(B\)取\(\sqrt{m \log m}\)时最优.总时间复杂\(O(n\sqrt{m \log m})\)
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define maxn 200000
using namespace std;
typedef long double db;
typedef long long ll;
const db pi=acos(-1.0);
struct com{
double real;
double imag;
com(){
}
com(double _real,double _imag){
real=_real;
imag=_imag;
}
com(double x){
real=x;
imag=0;
}
void operator = (const com x){
this->real=x.real;
this->imag=x.imag;
}
void operator = (const double x){
this->real=x;
this->imag=0;
}
friend com operator + (com p,com q){
return com(p.real+q.real,p.imag+q.imag);
}
friend com operator + (com p,double q){
return com(p.real+q,p.imag);
}
void operator += (com q){
*this=*this+q;
}
void operator += (double q){
*this=*this+q;
}
friend com operator - (com p,com q){
return com(p.real-q.real,p.imag-q.imag);
}
friend com operator - (com p,double q){
return com(p.real-q,p.imag);
}
void operator -= (com q){
*this=*this-q;
}
void operator -= (double q){
*this=*this-q;
}
friend com operator * (com p,com q){
return com(p.real*q.real-p.imag*q.imag,p.real*q.imag+p.imag*q.real);
}
friend com operator * (com p,double q){
return com(p.real*q,p.imag*q);
}
void operator *= (com q){
*this=(*this)*q;
}
void operator *= (double q){
*this=(*this)*q;
}
friend com operator / (com p,double q){
return com(p.real/q,p.imag/q);
}
void operator /= (double q){
*this=(*this)/q;
}
void print(){
printf("%lf + %lf i ",real,imag);
}
};
void fft(com *x,int n,int type){
static int rev[maxn+5];
int dn=1,k=0;
while(dn<n){
dn*=2;
k++;
}
for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(k-1));
for(int i=0;i<n;i++) if(i<rev[i]) swap(x[i],x[rev[i]]);
for(int len=1;len<n;len*=2){
int sz=len*2;
com wn1=com(cos(2*pi/sz),sin(2*pi/sz)*type);
for(int l=0;l<n;l+=sz){
int r=l+len-1;
com wnk=1;
for(int i=l;i<=r;i++){
com tmp=x[i+len];
x[i+len]=x[i]-wnk*tmp;
x[i]=x[i]+wnk*tmp;
wnk*=wn1;
}
}
}
if(type==-1) for(int i=0;i<n;i++) x[i]/=n;
}
void mul(com *a,com *b,com *ans,int n){
fft(a,n,1);
if(a!=b) fft(b,n,1);
for(int i=0;i<n;i++) ans[i]=a[i]*b[i];
fft(ans,n,-1);
}
int n;
int bsz,bcnt;
int a[maxn+5];
int bel[maxn+5];
int lb[maxn+5],rb[maxn+5];//预处理每个数的左右边界,卡常
void ini_block(){
bsz=sqrt(n*log(n)/log(2));
bcnt=1;
for(int i=1;i<=n;i++){
bel[i]=bcnt;
if(i%bsz==0) bcnt++;
}
for(int i=1;i<=bcnt;i++){
lb[i]=bsz*(i-1)+1;
rb[i]=min(i*bsz,n);
}
}
int cntl[maxn+5],cntr[maxn+5];
com fl[maxn+5],fr[maxn+5],res[maxn+5];
int main(){
scanf("%d",&n);
ini_block();
int maxv=0;
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
maxv=max(maxv,a[i]);
}
//i,j,k有>=2个在同一块内,直接暴力O(n/B*B^2)=O(Bn)
ll ans=0;
for(int i=n;i>=1;i--) cntr[a[i]]++;
for(int id=1;id<=bcnt;id++){
//cntl记录的是当前块前面的数的出现情况
//cntr记录的是i后面的数的出现情况
//注意i,j,k均在一个块内的情况只能被算1次
for(int k=lb[id];k<=rb[id];k++){
cntr[a[k]]--;
for(int j=lb[id];j<k;j++){
int ai=a[j]*2-a[k];
if(ai>=0&&ai<=maxn) ans+=cntl[ai];
ai=a[k]*2-a[j];
if(ai>=0&&ai<=maxn) ans+=cntr[ai];//这样只有这个时候会算到i,j,k在同一个块里的情况
}
}
for(int j=lb[id];j<=rb[id];j++) cntl[a[j]]++;
}
memset(cntl,0,sizeof(cntl));
memset(cntr,0,sizeof(cntr));
for(int i=n;i>=lb[2];i--) cntr[a[i]]++;
for(int i=1;i<=rb[1];i++) cntl[a[i]]++;
for(int id=2;id<bcnt;id++){
for(int j=lb[id];j<=rb[id];j++) cntr[a[j]]--;
for(int j=0;j<=maxv;j++){
fl[j]=cntl[j];
fr[j]=cntr[j];
}
int dn=1;
while(dn<=maxv*2) dn*=2;
mul(fl,fr,res,dn);
for(int j=lb[id];j<=rb[id];j++){
ans+=(ll)(res[a[j]*2].real+0.5);
}
for(int j=0;j<=dn;j++){
fl[j]=0;
fr[j]=0;
res[j]=0;
}
for(int j=lb[id];j<=rb[id];j++) cntl[a[j]]++;
}
printf("%lld\n",ans);
}
[BZOJ 3509] [CodeChef] COUNTARI (FFT+分块)的更多相关文章
- bzoj 3509: [CodeChef] COUNTARI] [分块 生成函数]
3509: [CodeChef] COUNTARI 题意:统计满足\(i<j<k, 2*a[j] = a[i] + a[k]\)的个数 \(2*a[j]\)不太好处理,暴力fft不如直接暴 ...
- BZOJ 3509: [CodeChef] COUNTARI
3509: [CodeChef] COUNTARI Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 883 Solved: 250[Submit][S ...
- BZOJ 3509 [CodeChef] COUNTARI ——分块 FFT
分块大法好. 块内暴力,块外FFT. 弃疗了,抄SX队长$silvernebula$的代码 #include <map> #include <cmath> #include & ...
- BZOJ3509 [CodeChef] COUNTARI 【分块 + fft】
题目链接 BZOJ3509 题解 化一下式子,就是 \[2A[j] = A[i] + A[k]\] 所以我们对一个位置两边的数构成的生成函数相乘即可 但是由于这样做是\(O(n^2logn)\)的,我 ...
- CodeChef - COUNTARI FTT+分块
Arithmetic Progressions Given N integers A1, A2, …. AN, Dexter wants to know how many ways he can ch ...
- BZOJ3509: [CodeChef] COUNTARI
3509: [CodeChef] COUNTARI Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 339 Solved: 85[Submit][St ...
- bzoj 3513: [MUTC2013]idiots FFT
bzoj 3513: [MUTC2013]idiots FFT 链接 bzoj 思路 参考了学姐TRTTG的题解 统计合法方案,最后除以总方案. 合法方案要不好统计,统计不合法方案. \(a+b< ...
- BZOJ 3343: 教主的魔法(分块+二分查找)
BZOJ 3343: 教主的魔法(分块+二分查找) 3343: 教主的魔法 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1172 Solved: ...
- CodeChef COUNTARI Arithmetic Progressions(分块 + FFT)
题目 Source http://vjudge.net/problem/142058 Description Given N integers A1, A2, …. AN, Dexter wants ...
随机推荐
- AOP aspect XML 配置
/** * 00配置接入点:定义一个切入点 * execution(* com.foen.foensys.controller..*.*(..))") "*" 第一个* ...
- jeesite安装时Perhaps you are running on a JRE rather than a JDK
使用自己本地安装的maven,启动jeesite报错: No compiler is provided in this environment. Perhaps you are running on ...
- html body标签 语法
html body标签 语法 标签body是什么意思? 标签body是一个网页的身体部分,也就是用于定义网页的主体内容,也是一个HTML文档中必须的部分. 作用:定义文档的主体. 广州大理石机械构件 ...
- BZOJ 4881: [Lydsy1705月赛]线段游戏 动态规划 + 线段树
Description quailty和tangjz正在玩一个关于线段的游戏.在平面上有n条线段,编号依次为1到n.其中第i条线段的两端点坐 标分别为(0,i)和(1,p_i),其中p_1,p_2,. ...
- POJ 3275 Ranking the cows ( Floyd求解传递闭包 && Bitset优化 )
题意 : 给出 N 头牛,以及 M 个某些牛之间的大小关系,问你最少还要确定多少对牛的关系才能将所有的牛按照一定顺序排序起来 分析 : 这些给出的关系想一下就知道是满足传递性的 例如 A > B ...
- sh_03_程序计数
sh_03_程序计数 # 打印 5 遍 Hello Python # 1. 定义一个整数变量,记录循环次数 i = 0 # 2. 开始循环 while i < 3: # 1> 希望在循环内 ...
- Pycharm,出现Invalid VCS root mapping The directory 解决方法
Pycharm File 中setting-------version control 中VCS选择none 后选择ok 执行完以上的步骤,还错误就会消失.
- (71)一篇文章带你熟悉HTTP协议
作者:涤生_Woo链接:http://www.jianshu.com/p/6e9e4156ece3來源:简书著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 本篇文章篇幅比较长,先 ...
- Iterator(遍历器) 和 for...of 循环
是generator的前置知识 generator :https://www.cnblogs.com/wangtong111/p/11322961.html 遍历器(Iterator)就是这样一种机制 ...
- Django REST framework 之 认证 权限 限制
认证是确定你是谁 权限是指你有没有访问这个接口的权限 限制主要是指限制你的访问频率 认证 REST framework 提供了一些开箱即用的身份验证方案,并且还允许你实现自定义方案. 接下类我们就自己 ...