Comet OJ - Contest #13 「火鼠的皮衣 -不焦躁的内心-」
来源:Comet OJ - Contest #13
芝士相关: 复平面在信息学奥赛中的应用【雾
其实是道 sb 题???
发现原式貌似十分可二项式定理,然后发现确实如此
我们把 \(a^i\) 替换成 \(\sqrt{a}^{2i}\) 然后发现原式求的就是 :\((\sqrt{a} +b)^n\) 展开后的偶数项
而这些偶数项有个性质,就是他们都不包含 \(\sqrt{a}\) ,所以我们可以把 \((\sqrt{a} +b)\) 转换到复平面上的点, \(b\) 做第一维, \(\sqrt a\) 做第二维
这样,每次第二维坐标相乘的时候 乘上 A 丢给第一维就好了
那么最后咱就用快速幂搞出答案取个第一维就完事儿了
于是学过二次剩余的聚聚显然秒懂代码长什么样...
Code
一直 WA ,后来才发现自己第二维赋的初始值出锅了... (真是憨呢)
//by Judge (zlw ak ioi)
#include<bits/stdc++.h>
#define int __int128_t
using namespace std;
#ifndef Judge
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
#endif
char buf[1<<21],*p1=buf,*p2=buf;
inline int read(){ int x=0,f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0'; return x*f;
} char sr[1<<21],z[20];int CCF=-1,Z;
inline void Ot(){fwrite(sr,1,CCF+1,stdout),CCF=-1;}
inline void print(int x,char chr='\n'){
if(CCF>1<<20)Ot();if(x<0)sr[++CCF]=45,x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++CCF]=z[Z],--Z);sr[++CCF]=chr;
} int n,A,B,p;
struct cp{ int x,y; cp(){}
cp(int _x,int _y){x=_x,y=_y;}
cp operator *(const cp& b){
return cp((x*b.x+y*b.y%p*A)%p , (x*b.y+y*b.x)%p);
}
}s;
inline int qpow(cp x,int p){ s=cp(1,0);
for(;p;p>>=1,x=x*x) if(p&1) s=s*x; return s.x;
}
inline void Solv(){
n=read(),A=read(),B=read(),p=read();
A%=p,B%=p,print(qpow(cp(B,1),n));
}
signed main(){ int T=read();
while(T--) Solv(); return Ot(),0;
}
Comet OJ - Contest #13 「火鼠的皮衣 -不焦躁的内心-」的更多相关文章
- Comet OJ - Contest #13 「佛御石之钵 -不碎的意志-」(hard)
来源:Comet OJ - Contest #13 一眼并查集,然后发现这题 tmd 要卡常数的说卧槽... 发现这里又要用并查集跳过访问点,又要用并查集维护联通块,于是开俩并查集分别维护就好了 一开 ...
- Comet OJ - Contest #13 「佛御石之钵 -不碎的意志-」(困难版) 并查集
题意 给一个$ n \times m$ 的网格,每个格子里有一个数字,非 \(0\) 即 \(1\),行从上往下依次编号为 \(1, 2, \cdots, n\),列从左往右依次编号为 \(1, 2, ...
- Comet OJ Contest #13 D
Comet OJ Contest #13 D \(\displaystyle \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} a^{i} b^{n- ...
- Comet OJ Contest #13 简要题解
C2 首先用并查集维护\(1\)的连通块,然后用另外一个并查集维护第\(i\)行中,第\(j\)列之后的第一个\(0\)的位置,就是如果当前位置是\(1\)那么它的父亲是它右边的格子,否则是它自己. ...
- Comet OJ - Contest #13
Rank53. 第一次打这种比赛.还是有不少问题的,以后改吧. A题WA了两次罚了不少时. C写到一半发现只能过1,就先弃了. D一眼没看出来.第二眼看出来就是一个类似于复数的快速幂. 然后B切了. ...
- Comet OJ - Contest #2 简要题解
Comet OJ - Contest #2 简要题解 cometoj A 模拟,复杂度是对数级的. code B 易知\(p\in[l,r]\),且最终的利润关于\(p\)的表达式为\(\frac{( ...
- Comet OJ - Contest #2简要题解
Comet OJ - Contest #2简要题解 前言: 我没有小裙子,我太菜了. A 因自过去而至的残响起舞 https://www.cometoj.com/contest/37/problem/ ...
- Comet OJ - Contest #4--前缀和
原题:Comet OJ - Contest #4-B https://www.cometoj.com/contest/39/problem/B?problem_id=1577传送门 一开始就想着暴力打 ...
- Comet OJ - Contest #11 题解&赛后总结
Solution of Comet OJ - Contest #11 A.eon -Problem designed by Starria- 在模 10 意义下,答案变为最大数的最低位(即原数数位的最 ...
随机推荐
- HDU 4725 The Shortest Path in Nya Graph (最短路 )
This is a very easy problem, your task is just calculate el camino mas corto en un grafico, and just ...
- linux下安装R第三方包forecast
ERROR: [root@localhost soft]# R CMD INSTALL curl_3.1.tar.gz WARNING: ignoring environment value of R ...
- [BZOJ2002][洛谷P3203][Hnoi2010]Bounce 弹飞绵羊(LCT维护链长)
luogu传送门 2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 16082 Solved: ...
- python 生成随机数的几种方法
随机取一个: import random random.choice(string.digits)#从数字里随机选取一位数字: 随机取多位数: random.sample(string.dig ...
- 6张图解释IO流
1.字节流InputStream 2.字节流OutputStream 3.字符流Reader 4.字符流Writer 5.节点流 6.处理流 总结: 节点流可以直接连接在数据源上,处理流不可以:节点流 ...
- Ajax学习--理解 Ajax 及其工作原理
Ajax 是 Asynchronous JavaScript and XML(以及 DHTML 等)的缩写. 下面是 Ajax 应用程序所用到的基本技术:• HTML 用于建立 Web 表单并确定应用 ...
- 后盾网lavarel视频项目---4、lavarel和vue都是{{}}表示变量,如何解决冲突
后盾网lavarel视频项目---4.lavarel和vue都是{{}}表示变量,如何解决冲突 一.总结 一句话总结: @{{videos}}:@符号表示lavarel不处理:textarea nam ...
- Quartz.Net任务调度总结
Quartz.Net使用经验总结: 学习参考的例子不错,分享一下: (1)https://www.cnblogs.com/jys509/p/4628926.html,该博文介绍比较全面 (2)http ...
- GO开发:链表
链表 type Student struct { Name string Next* Student } 每个节点包含下一个节点的地址,这样把所有的节点串起来了,通常把链表中的第一个节点叫做链表头 p ...
- Android 调用相机、相册功能
清单文件中增加对应权限,动态申请权限(此部分请参考Android 动态申请权限,在此不作为重点描述) private static final int REQUEST_CODE_ALBUM = 100 ...