Rainbow的信号 CH3801
题意:求n个整数任意取一个区间,一起进行xor,and,或or的操作,求xor的期望值,and的期望值,or的期望值。
思路:区间取的左端点为l,右端点为r,当r==l时,选的概率为1/n/n,而r!=l时,选的概率为2/n/n。
然后因为进行二进制操作,所以枚举整数的每个二进制位。三个操作分三种情况:
1and:考虑先枚举一个右端点r,考虑and的性质,所以考虑找到前面第一个0出现的位置last[0],如果这一位也为1,那么左端点就可以取[last[0]+1,r−1]。
2or:依然考虑枚举右端点r,找到前一个1出现的位置last[1],如果这一位为1,那么左端点可以取[1,r−1],如果这一位不为0,那么左端点可以取[1,last[1]]。
3xor:算法竞赛进阶指南上写得很详细。
首先依然是枚举右端点r,因为xor的性质,所以考虑找到所有为1的点,然后根据这些点进行黑白染色,就会是左端点可以取所有白段,最后再递推一下。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<map>
#include<queue>
#include<vector>
#include<string>
#include<set>
#define ll long long
using namespace std;
const int N=1e6+;
int n;
int a[N],b[N];
double ansa,anso,ansx;
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
for(int k=;k<;k++)
{
int last[]={,},c1=,c2=;
for(int i=;i<=n;i++)
{
b[i]=((a[i]>>k)&);
if(b[i])
{
ansa+=(<<k)*1.0/n/n;
anso+=(<<k)*1.0/n/n;
ansx+=(<<k)*1.0/n/n;
}
}
for(int i=;i<=n;i++)
{
if(!b[i])
{
anso+=(<<k)*2.0/n/n*last[];
}
else
{
ansa+=(<<k)*2.0/n/n*(i--last[]);
anso+=(<<k)*2.0/n/n*(i-);
}
ansx+=(<<k)*2.0/n/n*(b[i]?c1:c2);
c1++;
if(b[i])
swap(c1,c2);
last[b[i]]=i;
}
}
printf("%.3lf %.3lf %.3lf\n",ansx,ansa,anso);
}
Rainbow的信号 CH3801的更多相关文章
- Rainbow的信号
Rainbow的信号 有一串长度为n的数列,现在从中等概率选出l,r,如果l大于r,则交换,有三个询问 l~r间的数与和的数学期望 l~r间的数或和的数学期望 l~r间的数异或和的数学期望 对于100 ...
- tyvj 2020 rainbow 的信号
期望 被精度坑惨的我 注意:能开 long long 尽量开, 先除后乘, int 转 double 的时候 先转换在做运算 本题与位运算有关,位与位之间互不影响,所以我们可以分开考虑 #includ ...
- joyoi2020/lfyzoj114 Rainbow 的信号
位与位间互不影响.一位一位计算. 长度为 \(1\) 的区间,选出概率为 \(1/n^2\).其余区间,选出概率为 \(2/n^2\).(这里的区间 \(l \leq r\)) 枚举右端点.记 \(l ...
- [BZOJ3054] Rainbow的信号(考虑位运算 + DP?)
传送门 BZOJ没数据范围... 其实数据范围是这样的.. 前20%可以直接n^3暴力枚举每个区间 前40%可以考虑每一位,因为所有数每一位都是独立的,而和的期望=期望的和,那么可以枚举每一位,再枚举 ...
- $CH$3801 $Rainbow$的信号 期望+位运算
正解:位运算 解题报告: 传送门! 其实就是个位运算,,,只是顺便加了个期望的知识点$so$期望的帕并不难来着$QwQ$ 先把期望的皮扒了,就直接分类讨论下,不难发现,答案分为两个部分 $\left\ ...
- AcWing 216 Rainbow 的信号
题意 给定一个长度为n的序列,然后从\(1\sim N\) 这 N 个数中选取两个数\(l,r\) , 如果\(l>r\),则交换\(l,r\).把第\(l\) 个数到第\(r\)个数取出来构成 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- CH3801Rainbow的信号
Description Freda发明了传呼机之后,rainbow进一步改进了传呼机发送信息所使用的信号.由于现在是数字.信息时代,rainbow发明的信号用N个自然数表示.为了避免两个人的对话被大坏 ...
- Rainbow: Combining Improvements in Deep Reinforcement Learning
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:1710.02298v1 [cs.AI] 6 Oct 2017 (AAAI 2018) Abstract 深度强化学习社区对D ...
随机推荐
- Integer自动装箱和拆箱
Integer a=3; => Integer a=Integer.valueOf(3); /** *@description: 自动装箱和拆箱 *@auther: yangsj *@ ...
- IntelliJ IDEA 2018 2.X破解
一 下载idea 官网 :https://www.jetbrains.com/idea/ 二 下载破解包 IntelliJ IDEA 2018.1.X--2.X(2.6可用,图就不改了) 链接: ht ...
- 机器学习实战笔记-10-K均值聚类
K-均值聚类 优点:易实现.缺点:可能收敛到局部最小值,大规模数据集上收敛较慢:适用于数值型数据. K-均值聚类(找到给定数据集的k个簇) 算法流程 伪代码: 创建k个点作为起始质心(经常是随机选择) ...
- linux下的sleep()和usleep()的使用和区别
函数名: sleep头文件: #include<windows.h> // 在VC中使用带上头文件 #include<unistd.h> // ...
- jQuery基础--CSS操作、class操作、attr操作、prop操作
1.1.1 css操作 功能:设置或者修改样式,操作的是style属性. 设置单个样式 //name:需要设置的样式名称 //value:对应的样式值 css(name, value); //使 ...
- Node.js实战5:操作系统与命令行。
Nodejs有一些内置的方法可以查询操作系统信息: 如: process.arch获取到系统是32位还是64位, process.platform可获取系统的类型. 例程: console.log(p ...
- [HDU 3625]Examining the Rooms (第一类斯特林数)
[HDU 3625]Examining the Rooms (第一类斯特林数) 题面 有n个房间,每个房间有一个钥匙,钥匙等概率的出现在n个房间内,每个房间中只会出现且仅出现一个钥匙.你能炸开门k次, ...
- k8s 组件介绍-kube-schedule
kubernetes scheduler 基本原理 kubernetes scheduler 作为一个单独的进程部署在 master 节点上,它会 watch kube-apiserver 进程去发现 ...
- hdu4734 F(x)(数位dp)
题目传送门 F(x) Time Limit: 1000/500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- P3191 [HNOI2007]紧急疏散EVACUATE(费用流)
P3191 [HNOI2007]紧急疏散EVACUATE 费用流+卡常优化 我们只关心一个人通过门时的时间,在空地的行走时间可以分层维护 于是根据时间分层,到门的时候再计算代价,即代价$=$层数 每经 ...