POJ 1797 Heavy Transportation (Dijkstra)
题目链接:POJ 1797
Description
Background
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight.
Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.
Problem
You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.
Input
The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.
Output
The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.
Sample Input
1
3 3
1 2 3
1 3 4
2 3 5
Sample Output
Scenario #1:
4
Source
TUD Programming Contest 2004, Darmstadt, Germany
Solution
题意
有 N 个城市,M 条道路,Hugo Heavy 要从城市 1 到城市 N 运输货物,每条道路都有它的最大载重量,求从城市 1 到城市 N 运送最多的重量是多少。
思路
Dijkstra
与 POJ 2253 Frogger 类似,修改一下 \(Dijkstra\) 的松弛方程:\(if\ d[v] < min(d[u], w[u][v])\ then\ d[v] = min(d[u], w[u][v])\)。注意 \(d\) 数组初始化成无穷大。
这题有点坑,输出两个换行。
此题还可以用最大生成树解决。戳这里
Code
#include <iostream>
#include <cstdio>
#include <queue>
#include <map>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1010, M = 1e6 + 10;
const int inf = 0x3f3f3f3f;
typedef pair<int, int> P;
int n, m;
struct Edge {
int to, w;
Edge(int to, int w): to(to), w(w) {}
};
vector<Edge> G[N];
int d[N], v[N];
void init() {
for(int i = 0; i < N; ++i) {
G[i].clear();
}
}
void add(int x, int y, int z) {
G[x].push_back(Edge(y, z));
}
void dijkstra(int s) {
// priority_queue<P,vector<P>,greater<P> > q;
priority_queue<P> q;
memset(d, 0, sizeof(d));
memset(v, 0, sizeof(v));
d[s] = inf;
q.push(P(inf, s));
while(q.size()) {
P p = q.top(); q.pop();
int x = p.second;
if(v[x]) continue;
v[x] = 1;
for(int i = 0; i < G[x].size(); ++i) {
Edge e = G[x][i];
if (d[e.to] < min(d[x], e.w)) {
d[e.to] = min(d[x], e.w);
q.push(P(d[e.to],e.to));
}
}
}
}
int main() {
int T;
scanf("%d", &T);
int kase = 0;
while(T--) {
init();
scanf("%d%d", &n, &m);
for(int i = 0; i < m; ++i) {
int x, y, z;
scanf("%d%d%d", &x, & y, &z);
add(x, y, z);
add(y, x, z);
}
dijkstra(1);
if(kase) printf("\n");
printf("Scenario #%d:\n", ++kase);
printf("%d\n", d[n]);
}
return 0;
}
POJ 1797 Heavy Transportation (Dijkstra)的更多相关文章
- POJ.1797 Heavy Transportation (Dijkstra变形)
POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...
- POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径)
POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径) Description Background Hugo ...
- poj 1797 Heavy Transportation(最大生成树)
poj 1797 Heavy Transportation Description Background Hugo Heavy is happy. After the breakdown of the ...
- POJ 1797 Heavy Transportation
题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K T ...
- POJ 1797 Heavy Transportation SPFA变形
原题链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K T ...
- POJ 1797 Heavy Transportation (Dijkstra变形)
F - Heavy Transportation Time Limit:3000MS Memory Limit:30000KB 64bit IO Format:%I64d & ...
- POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】
Heavy Transportation Time Limit:3000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64 ...
- POJ 1797 Heavy Transportation (dijkstra 最小边最大)
Heavy Transportation 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Backgro ...
- POJ 1797 Heavy Transportation (最大生成树)
题目链接:POJ 1797 Description Background Hugo Heavy is happy. After the breakdown of the Cargolifter pro ...
随机推荐
- SetWindowsHookEx 其他进程的 记录
SetWindowsHookEx( WH_GETMESSAGE,CallWndProc, HInstance, h2); WH_GETMESSAGE 这个类型 hook 其他窗体的 线程是正常的 ...
- HttpServletRequest 对文件上传的支持
此前,对于处理上传文件的操作一直是让开发者头疼的问题,因为 Servlet 本身没有对此提供直接的支持,需要使用第三方框架来实现,而且使用起来也不够简单.Servlet 3.0 已经提供了这个功能,而 ...
- day 52协程
协程进程线程: # 进程 启动多个进程 进程之间是由操作系统负责调用 # 线程 启动多个线程 真正被CPU执行的最小单位实际是线程 # 开启一个线程 创建一个线程 寄存器 堆栈 # 关闭一个线程 # ...
- shell查词典
curl http://cn.bing.com/dict/search?q=spawn -s | sed -e '{s/<\/span>/&\n/g}' | sed -n '{/& ...
- LeetCode 最短无序连续子数组
题目链接:https://leetcode-cn.com/problems/shortest-unsorted-continuous-subarray/ 题目大意: 略. 分析: 如果排序区间为 [L ...
- 手机网页制作的认识(有关meta标签)(转)
仅用来记录学习: 链接地址:https://blog.csdn.net/ye1992/article/details/22714621
- 40.Unique Binary Search Trees(不同的二叉搜索树)
Level: Medium 题目描述: Given n, how many structurally unique BST's (binary search trees) that store v ...
- ES6新增语法和内置对象(let,const, Array/String/Set 扩展方法(解构赋值,箭头函数,剩余参数))
1.let ES6中新增的用于声明变量的关键字. let 声明的变量只在所处于的块级有效. 注意:使用 let 关键字声明的变量才具有块级作用域,var 关键字是不具备这个特点的. 1. 防止循环变量 ...
- 命令分析nginx访问日志的用法
awk分析日志常用高级使用命令方法 分析访问日志(Nginx为例) 日志格式: '$remote_addr - $remote_user [$time_local] "$request&qu ...
- 一、bootstrap-datepicker
一.bootstrap-datepicker <!DOCTYPE html> <html> <head> <title></title> & ...