BZOJ 1906. 树上的蚂蚁
发现蚂蚁不多,所以考虑两两枚举然后判断
那么首先要求出两条链的公共部分,然后根据之间在公共链的时间段和是同向还是反向进行判断
思路简单但是细节很多......
首先求链的公共部分,设两种蚂蚁为 $a,b$,路径分别为 $As,At$,$Bs,Bt$
那么经过一波手玩分类讨论,公共部分的两端点就是 $LCA(As,Bs),LCA(As,Bt),LCA(At,Bs),LCA(At,Bt)$ 之间 $dfs$ 序较大的两个
记得之前要先把不在两条链上的点去掉,然后如果最后只有一个点合法则公共部分只有一个点
然后每只蚂蚁在公共链的起点就是距离比较近的那个,判断是否同向只要看看公共链起点是否相等即可
判断点是否在某条链上,因为边权不为 $0$ ,所以可以用点到链两端点的距离和是否等于链长来判断
然后如果两只蚂蚁同向,那么只要判断先到达公共链起点的后到达公共链终点即可
如果不同向,那么要判断它们在公共链的时间区间是否有交
为了避免除法所以移项变成乘法,注意乘会爆 $int$
因为多次求 $LCA$,所以要 $RMQ$ $O(1)$ 求 $LCA$
具体实现我感觉自己代码还挺好看的...
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=2e5+,INF=1e9+;
int n,m,S[N],T[N],V[N],Ans;
int fir[N],from[N<<],to[N<<],val[N<<],cntt;
inline void add(int a,int b,int c)
{
from[++cntt]=fir[a]; fir[a]=cntt;
to[cntt]=b; val[cntt]=c;
}
int dep[N],dfn[N],cnt,st[N<<],pos[N<<],Top;
void dfs(int x,int fa)
{
dfn[x]=++cnt; st[++Top]=x; pos[x]=Top;
for(int i=fir[x];i;i=from[i])
{
int &v=to[i]; if(v==fa) continue;
dep[v]=dep[x]+val[i]; dfs(v,x); st[++Top]=x;
}
}
int F[N<<][],Log[N<<];
void pre()
{
Log[]=-; for(int i=;i<=Top;i++) Log[i]=Log[i>>]+;//
for(int i=;i<=Top;i++) F[i][]=st[i];
for(int i=;(<<i)<=Top;i++)
for(int j=;j+(<<i-)<=Top;j++)
{
if( dfn[F[j][i-]] < dfn[ F[j+(<<i-)][i-] ] ) F[j][i]=F[j][i-];
else F[j][i]=F[j+(<<i-)][i-];
}
}
inline int query(int x,int y)
{
int l=pos[x],r=pos[y],k; if(l>r) swap(l,r);
k=Log[r-l+];
if(dfn[F[l][k]]<dfn[F[r-(<<k)+][k]]) return F[l][k];
else return F[r-(<<k)+][k];
}
inline ll dis(int x,int y) { return dep[x]+dep[y]-*dep[query(x,y)]; }
inline bool cmp(const int &A,const int &B) { return dfn[A]>dfn[B]; }
inline bool in_chain(int x,int y,int a) { return dis(x,a)+dis(y,a)==dis(x,y); }
inline bool pd(ll l,ll r,ll x) { return x>=l && x<=r; }
inline bool solve(int As,int At,int Bs,int Bt,int Av,int Bv)
{
int x[],tot=,p=query(As,Bs);
if(in_chain(As,At,p)&&in_chain(Bs,Bt,p)) x[++tot]=p;
p=query(As,Bt);
if(in_chain(As,At,p)&&in_chain(Bs,Bt,p)) x[++tot]=p;
p=query(At,Bs);
if(in_chain(As,At,p)&&in_chain(Bs,Bt,p)) x[++tot]=p;
p=query(At,Bt);
if(in_chain(As,At,p)&&in_chain(Bs,Bt,p)) x[++tot]=p;
if(!tot) return ;
sort(x+,x+tot+,cmp); if(tot==) x[]=x[];
int Al=(dis(As,x[])<dis(As,x[]) ? x[] : x[]),Ar=(Al==x[] ? x[] : x[]);
int Bl=(dis(Bs,x[])<dis(Bs,x[]) ? x[] : x[]),Br=(Bl==x[] ? x[] : x[]);
ll Asl=dis(As,Al)*Bv,Bsl=dis(Bs,Bl)*Av,Asr=dis(As,Ar)*Bv,Bsr=dis(Bs,Br)*Av;
if(Al==Bl)
{
if(Asl<=Bsl && Asr>=Bsr) return ;
if(Asl>=Bsl && Asr<=Bsr) return ;
return ;
}
if(pd(Asl,Asr,Bsl)||pd(Asl,Asr,Bsr)) return ;
if(pd(Bsl,Bsr,Asl)||pd(Bsl,Bsr,Asr)) return ;
return ;
}
int main()
{
int TT=read();
while(TT--)
{
cntt=Top=cnt=Ans=; for(int i=;i<=n;i++) fir[i]=;
n=read(); int a,b,c;
for(int i=;i<n;i++)
{
a=read(),b=read(),c=read();
add(a,b,c); add(b,a,c);
}
m=read();
for(int i=;i<=m;i++) S[i]=read(),T[i]=read(),V[i]=read();
dfs(,); pre();
for(int i=;i<=m;i++)
for(int j=i+;j<=m;j++)
if(solve(S[i],T[i],S[j],T[j],V[i],V[j])) Ans++;
printf("%d\n",Ans);
}
return ;
}
BZOJ 1906. 树上的蚂蚁的更多相关文章
- BZOJ.3784.树上的路径(点分治 贪心 堆)
BZOJ \(Description\) 给定一棵\(n\)个点的带权树,求树上\(\frac{n\times(n-1)}{2}\)条路径中,长度最大的\(m\)条路径的长度. \(n\leq5000 ...
- BZOJ 3784: 树上的路径
Description 问一棵树上前 \(k\) 大路径的边权. Sol 边分治. 非常感谢数据没有菊花图. 为了写写边分治试试然后就开了这道题. 边分治非常好想,选一条重边,分成两部分,然后分别求最 ...
- bzoj 3784: 树上的路径 堆维护第k大
3784: 树上的路径 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 88 Solved: 27[Submit][Status][Discuss] ...
- [BZOJ 1033] [ZJOI2008] 杀蚂蚁antbuster 【模拟!】
题目链接: BZOJ - 1033 题目分析 模拟!纯粹按照题目描述模拟! 这是一道喜闻乐见的经典模拟题! 我一共写了2遍,Debug 历时2天的所有晚自习 ... 时间超过 8h ... 我真是太弱 ...
- BZOJ 1316: 树上的询问( 点分治 + 平衡树 )
直接点分治, 用平衡树(set就行了...)维护. -------------------------------------------------------------------------- ...
- BZOJ1906树上的蚂蚁&BZOJ3700发展城市——RMQ求LCA+树链的交
题目描述 众所周知,Hzwer学长是一名高富帅,他打算投入巨资发展一些小城市. Hzwer打算在城市中开N个宾馆,由于Hzwer非常壕,所以宾馆必须建在空中,但是这样就必须建立宾馆之间的连接通道.机智 ...
- bzoj 4033 树上染色 - 树形动态规划
有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑 色,并将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的 ...
- [BZOJ 1033][ZJOI2008]杀蚂蚁antbuster
1033: [ZJOI2008]杀蚂蚁antbuster Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1200 Solved: 507[Submi ...
- bzoj 3757 树上莫队
感谢以下文章作者: http://blog.csdn.net/kuribohg/article/details/41458639 http://vfleaking.blog.163.com/blog/ ...
随机推荐
- linux的字符集转换
命令查看编码类型 查看命令参数 查看支持的字符集 将文件转换成utf-8 的文件(经测试比较鸡肋,不好用) [root@ag-1 hh]# iconv oldboy -f us-ascii -t ut ...
- Jackson和fastjson简单用法及性能对比
背景: Java处理JSON数据有三个比较流行的类库FastJSON.Gson和Jackson.fastjson是阿里做的国有开源Java工具包,jackson是spring mvc内置的json转换 ...
- BZOJ 4423: [AMPPZ2013]Bytehattan 平面图转对偶图 + 并查集
Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的.有k次操作,每次会删掉图中的一条边(u,v),你需要回答在删除这条边之后u和v是否仍然连通. Input 第一 ...
- 51 Nod 1678 lyk与gcd(容斥原理)
1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 这天,lyk又和gcd杠上了. 它拥有一个n个数的数列,它想实现两种操作 ...
- ES6 字符串的解构赋值
字符串也可以解构赋值.这是因为此时,字符串被转换成了一个类似数组的对象. const [a, b, c, d, e] = 'hello'; a // "h" b // " ...
- C#实现读取指定盘符硬盘序列号的方法
文章主要介绍了C#实现读取指定盘符硬盘序列号的方法,涉及C#针对硬件属性的相关操作技巧,具有一定参考借鉴价值,需要的朋友可以参考下 本文实例讲述了C#实现读取指定盘符硬盘序列号的方法.分享给大家供 ...
- springBoot 动态注入bean(bean的注入时机)
springBoot 动态注入bean(bean的注入时机) 参考博客:https://blog.csdn.net/xcy1193068639/article/details/81517456
- ERROR:imshow、Mat、waitkey找不到标识符(opencv)
可以发现imshow.Mat.waitkey这三个都是opencv相关的. 在添加了相关库文件后还是有问题. #include "stdafx.h" #include <st ...
- delphi 跨版本DLL调用嵌入窗体实现
delphi 能实现把别的DLL的窗体句柄查到后,贴到PANL之中,此类文章网上不少,而如果是delphi不同版本开发的DLL互调时,一些控件内部的定义有所区别,因为无法(至少目前我觉得理论上不可行) ...
- Webpack的tapable 为什么要使用 new Funtion 来生成静态代码
为了保持代码的单态(monomorphism). 这涉及到了js引擎优化的一些问题, tapable从1.0.0版本开始就用new Function来生成静态代码最后来来执行, 以确保得到最优执行效率 ...