索引介绍,转载自:https://tech.meituan.com/2014/06/30/mysql-index.html
索引原理
除了词典,生活中随处可见索引的例子,如火车站的车次表、图书的目录等。它们的原理都是一样的,通过不断的缩小想要获得数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是我们总是通过同一种查找方式来锁定数据。
数据库也是一样,但显然要复杂许多,因为不仅面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询呢?最简单的如果1000条数据,1到100分成第一段,101到200分成第二段,201到300分成第三段……这样查第250条数据,只要找第三段就可以了,一下子去除了90%的无效数据。但如果是1千万的记录呢,分成几段比较好?稍有算法基础的同学会想到搜索树,其平均复杂度是lgN,具有不错的查询性能。但这里我们忽略了一个关键的问题,复杂度模型是基于每次相同的操作成本来考虑的,数据库实现比较复杂,数据保存在磁盘上,而为了提高性能,每次又可以把部分数据读入内存来计算,因为我们知道访问磁盘的成本大概是访问内存的十万倍左右,所以简单的搜索树难以满足复杂的应用场景。
磁盘IO与预读
前面提到了访问磁盘,那么这里先简单介绍一下磁盘IO和预读,磁盘读取数据靠的是机械运动,每次读取数据花费的时间可以分为寻道时间、旋转延迟、传输时间三个部分,寻道时间指的是磁臂移动到指定磁道所需要的时间,主流磁盘一般在5ms以下;旋转延迟就是我们经常听说的磁盘转速,比如一个磁盘7200转,表示每分钟能转7200次,也就是说1秒钟能转120次,旋转延迟就是1/120/2 = 4.17ms;传输时间指的是从磁盘读出或将数据写入磁盘的时间,一般在零点几毫秒,相对于前两个时间可以忽略不计。那么访问一次磁盘的时间,即一次磁盘IO的时间约等于5+4.17 = 9ms左右,听起来还挺不错的,但要知道一台500 -MIPS的机器每秒可以执行5亿条指令,因为指令依靠的是电的性质,换句话说执行一次IO的时间可以执行40万条指令,数据库动辄十万百万乃至千万级数据,每次9毫秒的时间,显然是个灾难。下图是计算机硬件延迟的对比图,供大家参考:

考虑到磁盘IO是非常高昂的操作,计算机操作系统做了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内,因为局部预读性原理告诉我们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。每一次IO读取的数据我们称之为一页(page)。具体一页有多大数据跟操作系统有关,一般为4k或8k,也就是我们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计非常有帮助。
索引的数据结构
前面讲了生活中索引的例子,索引的基本原理,数据库的复杂性,又讲了操作系统的相关知识,目的就是让大家了解,任何一种数据结构都不是凭空产生的,一定会有它的背景和使用场景,我们现在总结一下,我们需要这种数据结构能够做些什么,其实很简单,那就是:每次查找数据时把磁盘IO次数控制在一个很小的数量级,最好是常数数量级。那么我们就想到如果一个高度可控的多路搜索树是否能满足需求呢?就这样,b+树应运而生。
详解b+树

如上图,是一颗b+树,关于b+树的定义可以参见B+树,这里只说一些重点,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P1、P2、P3,P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。
b+树的查找过程
如图所示,如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。
b+树性质
1.通过上面的分析,我们知道IO次数取决于b+数的高度h,假设当前数据表的数据为N,每个磁盘块的数据项的数量是m,则有h=㏒(m+1)N,当数据量N一定的情况下,m越大,h越小;而m = 磁盘块的大小 / 数据项的大小,磁盘块的大小也就是一个数据页的大小,是固定的,如果数据项占的空间越小,数据项的数量越多,树的高度越低。这就是为什么每个数据项,即索引字段要尽量的小,比如int占4字节,要比bigint8字节少一半。这也是为什么b+树要求把真实的数据放到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度下降,导致树增高。当数据项等于1时将会退化成线性表。
2.当b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+数是按照从左到右的顺序来建立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex,最后得到检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪个节点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。比如当(张三,F)这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是F的数据了, 这个是非常重要的性质,即索引的最左匹配特性。
关于MySQL索引原理是比较枯燥的东西,大家只需要有一个感性的认识,并不需要理解得非常透彻和深入。我们回头来看看一开始我们说的慢查询,了解完索引原理之后,大家是不是有什么想法呢?先总结一下索引的几大基本原则:
建索引的几大原则
1.最左前缀匹配原则,非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。 2.=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式。 3.尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录。
4.索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’)。
5.尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可。
索引介绍,转载自:https://tech.meituan.com/2014/06/30/mysql-index.html的更多相关文章
- Hive SQL的编译过程[转载自https://tech.meituan.com/hive-sql-to-mapreduce.html]
https://tech.meituan.com/hive-sql-to-mapreduce.html Hive是基于Hadoop的一个数据仓库系统,在各大公司都有广泛的应用.美团数据仓库也是基于Hi ...
- Spark in meituan http://tech.meituan.com/spark-in-meituan.html
Spark在美团的实践 忽略元数据末尾 回到原数据开始处 引言:Spark美团系列终于凑成三部曲了,Spark很强大应用很广泛, 文中Spark交互式开发平台和作业ETL模板的设计都很有启发借鉴意义. ...
- 写给初学前端工程师的一封信 - 转载 至https://www.w3ctech.com/topic/983
以下内容是转载https://www.w3ctech.com/topic/983 大家好: 应波波的邀请写一写我对这个话题的想法.从去年开始不少朋友让我帮忙介绍前端工程师,绝大部分忙都没帮上,原因是真 ...
- Elasticsearch索引模板-转载
转载地址:https://dongbo0737.github.io/2017/06/13/elasticsearch-template/#similar_posts Elasticsearch索引模板 ...
- 【极力分享】[C#/.NET]Entity Framework(EF) Code First 多对多关系的实体增,删,改,查操作全程详细示例【转载自https://segmentfault.com/a/1190000004152660】
[C#/.NET]Entity Framework(EF) Code First 多对多关系的实体增,删,改,查操作全程详细示例 本文我们来学习一下在Entity Framework中使用Cont ...
- 技术分享会(二):SQLSERVER索引介绍
SQLSERVER索引介绍 一.SQLSERVER索引类型? 1.聚集索引: 2.非聚集索引: 3.包含索引: 4.列存储索引: 5.无索引(堆表): 二.如何创建索引? 索引示例: 建表 creat ...
- MySQL索引介绍
引言 今天Qi号与大家分享什么是索引.其实索引:索引就相当于书的目录 索引介绍 用官方的话说就是 索引是为了加速对表中数据行的检索而创建的一种分散的存储结构.索引是针对表而建立的,它是由数据页面以外的 ...
- mysql性能优化-慢查询分析、优化索引和配置 MySQL索引介绍
MySQL索引介绍 聚集索引(Clustered Index)----叶子节点存放整行记录辅助索引(Secondary Index)----叶子节点存放row identifier-------Inn ...
- ubuntu重置root密码(转载自https://zhinan.sogou.com/guide/detail/?id=316512881651)
ubuntu忘记root密码怎么办?如果普通用户忘记了怎么办 ### 第一种方法:无论你是否申请了root帐号,或是普通账号密码忘记了都没有问题的! 1. 重启ubuntu,随即长按shift进入gr ...
随机推荐
- leetcode 82 删除排序列表中的重复元素II
与83类似,不过需要注意去除连续的重复片段的情况,如2 2 3 3这种情况,以及[1,1]这种情况下最终的cur为NULL,因此不能再令cur=cur->next; /** * Definiti ...
- CNN入门讲解-为什么要有最后一层全连接?
原文地址:https://baijiahao.baidu.com/s?id=1590121601889191549&wfr=spider&for=pc 今天要说的是CNN最后一层了,C ...
- javascript中几种为false的值
如果JavaScript预期某个位置应该是布尔值,会将该位置上现有的值自动转为布尔值.转换规则是除了下面六个值被转为false,其他值都视为true. undefined null false 0 ...
- Jmeter响应数据中文乱码|响应内容显示乱码
1.使用jmeter进行接口调用时出现返回数据乱码,如图示 原因是jmeter默认按照ISO-8859-1解析响应的数据. 2.所以需要修改bin目录下的jmeter.properties文件: 具体 ...
- python__005
一.字符串格式化 #字符串的拼接#msg='i am a best boy'+'非常帅'print(msg)name=input('name:')hobby=input(('hobby:'))age= ...
- java并发编程 线程间协作
线程间协作 1. 等待和通知 等待和通知的标准形式 等待方: 获取对象锁 循环中判断条件是否满足,不调用wait()方法 条件满足执行业务逻辑 通知方: 获取对象所 改变条件 通知所有等待在对象的线程 ...
- 【电子电路技术】短波红外InGaAs探测器简析
核心提示: 红外线是波长介于微波与可见光之间的电磁波,波长在0.75-1000μm之间,其在军事.通讯.探测.医疗等方面有广泛的应用.目前对红外线的分类还没有统一的标准,各个专业根据应用的需要,有着自 ...
- JS实现网页选取截屏 保存+打印 功能(转)
源码地址: 1.1 确定截图选取范围 用户在开始截图后,需要在页面上选取一个截图范围,并且可以直观的看到,类似如下效果: image 我们的选取范围就是鼠标开始按下的那个点到鼠标拖动然后松开的那个点之 ...
- angular [NgClass] [NgStyle],NgIf,[ngSwitch][ngSwitchCase]
[NgClass] CSS 类会根据表达式求值结果进行更新,更新逻辑取决于结果的类型: string - 会把列在字符串中的 CSS 类(空格分隔)添加进来, Array - 会把数组中的各个元素作 ...
- PTA 7-20 表达式转换
转自:https://www.cnblogs.com/yuxiaoba/p/8399934.html 算术表达式有前缀表示法.中缀表示法和后缀表示法等形式.日常使用的算术表达式是采用中缀表示法,即二元 ...