#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
typedef long long ll;
const int N=1e6+,M=;
char s[N],s2[N];
int n,f,k;
struct SAM {
int go[N][M],pre[N],mxl[N],c[N],ss[N],tot,last,siz[N],sum[N],vis[N],mx;
void init() {last=tot=; newnode(); pre[]=-;}
int newnode(int l) {
int u=tot++;
memset(go[u],,sizeof go[u]);
mxl[u]=l,siz[u]=;
return u;
}
void add(int ch) {
int p=last,np=last=newnode(mxl[p]+);
siz[np]=;
for(; ~p&&!go[p][ch]; p=pre[p])go[p][ch]=np;
if(!~p)pre[np]=;
else {
int q=go[p][ch];
if(mxl[q]==mxl[p]+)pre[np]=q;
else {
int nq=newnode(mxl[p]+);
memcpy(go[nq],go[q],sizeof go[nq]);
pre[nq]=pre[q],pre[q]=pre[np]=nq;
for(; ~p&&go[p][ch]==q; p=pre[p])go[p][ch]=nq;
}
}
}
void build(char* s,int n) {init(); for(int i=; i<n; ++i)add(s[i]-'a');}
void toposort() {
for(int i=; i<tot; ++i)c[i]=;
for(int i=; i<tot; ++i)++c[mxl[i]];
for(int i=; i<tot; ++i)c[i]+=c[i-];
for(int i=; i<tot; ++i)ss[--c[mxl[i]]]=i;
}
void getsiz() {
for(int i=tot-; i>; --i)siz[pre[ss[i]]]+=siz[ss[i]];
siz[]=;
}
void getsum() {
for(int i=; i<tot; ++i)sum[i]=siz[i];
for(int i=tot-; i>=; --i)
for(int j=; j<M; ++j)if(go[ss[i]][j])sum[ss[i]]+=sum[go[ss[i]][j]];
}
void qry(int u,int k) {
int dep;
for(dep=; k>siz[u]; ++dep) {
k-=siz[u];
for(int i=; i<M; ++i) {
int v=go[u][i];
if(!v)continue;
if(k<=sum[v]) {s2[dep]=i+'a',u=v; break;}
k-=sum[v];
}
}
s2[dep]=,puts(s2);
}
void run() {
build(s,n);
toposort();
if(f)getsiz();
else {for(int i=; i<tot; ++i)siz[i]=; siz[]=;}
getsum();
if(sum[]<k)puts("-1");
else qry(,k);
}
} sam;
int main() {
scanf("%s%d%d",s,&f,&k),n=strlen(s);
sam.run();
return ;
}

BZOJ - 3998 弦论 (后缀自动机)的更多相关文章

  1. bzoj 3998 弦论 —— 后缀自动机

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3998 关于相同子串算一个还是算多个,其实就是看一种状态的 right 集合是否加上 Pare ...

  2. BZOJ 3998: [TJOI2015]弦论 后缀自动机 后缀自动机求第k小子串

    http://www.lydsy.com/JudgeOnline/problem.php?id=3998 后缀自动机应用的一个模板?需要对len进行一个排序之后再统计每个出现的数量,维护的是以该字符串 ...

  3. BZOJ 3998 TJOI2015 弦论 后缀自动机+DAG上的dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3998 题意概述:对于一个给定长度为N的字符串,求它的第K小子串是什么,T为0则表示不同位置 ...

  4. BZOJ 3998 [TJOI2015]弦论 ——后缀自动机

    直接构建后缀自动机. 然后. 然后只需要再后缀自动机的go树上类似二分的方法进行查找即可,实际上是“26分”. 然后遇到了处理right集合的问题,然后觉得在go和parent树上上传都是可以的,毕竟 ...

  5. 【BZOJ-3998】弦论 后缀自动机

    3998: [TJOI2015]弦论 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2018  Solved: 662[Submit][Status] ...

  6. 【BZOJ3998】[TJOI2015]弦论 后缀自动机

    [BZOJ3998][TJOI2015]弦论 Description 对于一个给定长度为N的字符串,求它的第K小子串是什么. Input 第一行是一个仅由小写英文字母构成的字符串S 第二行为两个整数T ...

  7. BZOJ 2882: 工艺( 后缀自动机 )

    把串S复制成SS然后扔进后缀自动机里, 从根选最小的儿子走, 走N步就是答案了...一开始还想写个treap的...后来觉得太麻烦..就用map了... ----------------------- ...

  8. [bzoj3998][TJOI2015]弦论-后缀自动机

    Brief Description 给定一个字符串, 您需要求出他的严格k小子串或非严格k小子串. Algorithm Design 考察使用后缀自动机. 首先原串建SAM, 然后如果考察每个状态代表 ...

  9. bzoj 3277 & bzoj 3473,bzoj 2780 —— 广义后缀自动机

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3277 https://www.lydsy.com/JudgeOnline/problem.p ...

随机推荐

  1. [doker]ubuntu18安装doker

    ubuntu安装doker很简单,分4个步骤: Step1:更新资源库并安装apt-transprot-https软件包. 在安装Docker前, 首拉取最新的软件资源库 wangju@wangju- ...

  2. Struts2-Ajax整合之纯JavaScript版本

    1.Ajax的作用:能够在不重新加载页面的情况下,用异步的方式与后台服务器进行数据交互 2.Struts2-Json的jar包(包含阿里巴巴自己的jar包) commons-beanutils-1.7 ...

  3. 阶段3 2.Spring_10.Spring中事务控制_9 spring编程式事务控制1-了解

    编程式的事物控制,使用的情况非常少,主要作为了解 新建项目 首先导入包坐标 复制代码 这里默认值配置了Service.dao和连接池其他的内容都没有配置 也就说现在是没有事物支持的.运行测试文件 有错 ...

  4. 零填充(Zero-padding)

    零填充(Zero-padding):有时,在输入矩阵的边缘使用零值进行填充,这样我们就可以对输入图像矩阵的边缘进行滤波.零填充的一大好处是可以让我们控制特征图的大小.使用零填充的也叫做泛卷积,不适用零 ...

  5. java:Cookie(常用操作),Cookie和Session免登录实例

     1.常用操作: package cn.zzsxt.lee.web.cookie; import java.io.IOException; import javax.servlet.ServletEx ...

  6. ios app真机测试到上架App Store详细教程-必看

    详细操作地址 http://www.applicationloader.net/blog/zh/88.html 苹果iOS APP真机调试测试和上架App Store视频教程 优酷 http://v. ...

  7. python 一周总结

    从7月27前就开始了Djangoj框架的学习到今天一个项目实战已经过了一半了, django给我的感觉就像一个成熟的mov 首先是是数据模型层,Django已经成熟的加入了很多的数据模型供我们所使用 ...

  8. SSM004/工作内容

    一.java执行sql脚本 参考博客:java调用SQL脚本执行的方案 1.Service层代码:目的随spring容器启动即执行 //Service层代码 @Component public cla ...

  9. Java 并发编程:volatile的使用及其原理(二)

    一.volatile的作用 在<Java并发编程:核心理论>一文中,我们已经提到过可见性.有序性及原子性问题,通常情况下我们可以通过Synchronized关键字来解决这些个问题,不过如果 ...

  10. 【转】mysql用sql实现split函数

    关键词:mysql split mysql根据逗号将一行数据拆分成多行数据1.原始数据演示 2.处理结果演示 3.sql语句 SELECT a.id , a.NAME , substring_inde ...