题意简述:

在一个格点图中 给定一个凸$n$边形(每个定点均在格点上),随机选择其中一些点构成一个子多边形,

求子多边形的内部点个数的期望。

----------------------------------------------------------------------------------------------------------------------------------

首先这题是需要知道 皮克定理 这个结论的

我们用 $s$代表多边形面积 $ans$代表内部点数(即要求的答案)$node$代表边上的格点

公式即为 $ans=s-\frac{node}{2}+1$

----------------------------------------------------------------------------------------------------------------------------------

然后这题是求期望的 对于期望 我们知道它是满足分配率的 于是我们可以考虑分别求出$s$和$node$的期望

对于$s$的期望 可以这样考虑(算贡献)

每次选出一个子多边形后 剩余部分显然是可以用多个顶点连续的多边形补成的

我们可以用前缀和维护这个顶点连续的多边形的面积 然后来算贡献

公式为$\displaystyle \frac{2^{n-i} -1}{2^n-1-n-C_2^n}*$子多边形面积

直接求出所有是$O(n^2)$的 然而观察公式我们可以发现i取较大的数的时候对答案的影响是很小的

综合考虑题目要求的$10^{-9}$的相对误差以及$double$的精度 $i$的上界$lim$可以取$min(n,60)$

$node$的求法也是类似的 只要熟悉如何算贡献就比较容易了 想了很久还不懂的话可以留言

----------------------------------------------------------------------------------------------------------------------------------

这样我们就可以过掉样例了 然后我们会$ WA  10$

因为$double$不仅仅是精度限制 还有范围限制 大概范围就是 $(10^{300}~10^{-300})$

这个问题 初次遇见还是很纠结的 多想想后 我们发现可以把公式变形成这样(上下同时除$2^n$):

$\displaystyle\frac{2^{-i} -1}{1-2^{-n}*(1+n+C_n^2)}*$子多边形面积

----------------------------------------------------------------------------------------------------------------------------------

差不多就是这些了 第一次写$div1D$题 还有些小激动呢

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=1e5+;
double polygon[N],p[N];
int x[N],y[N];
double s,ans,node,product;
int n,lim;
double cross(long long x1,long long y1,long long x2,long long y2)
{
return x1*y2-x2*y1;
}
int main()
{
scanf("%d",&n);
lim=min(n,);
p[]=;
for(int i=;i<n;++i)
{
scanf("%d%d",&x[i],&y[i]);
p[i+]=p[i]*0.5;
}
for(int i=;i<lim;++i)
{
product=(p[i]-p[n])/
(-p[n]*((long long)n*(n-)/+n+));
for(int j=;j<n;++j)
{
polygon[j]+=cross(x[(j+i-)%n]-x[j],y[(j+i-)%n]-y[j],
x[(j+i-)%n]-x[j],y[(j+i-)%n]-y[j]);
s-=product*polygon[j];
}
}
for(int i=;i<n-;++i)
s+=cross(x[i+]-x[],y[i+]-y[],
x[i+]-x[],y[i+]-y[]);
s/=;
for(int i=;i<=lim;++i)
{
product=(p[i]-p[n])/
(-p[n]*((long long)n*(n-)/+n+));
for(int j=;j<n;++j)
node+=product*__gcd(abs(x[(j+i-)%n]-x[j]),
abs(y[(j+i-)%n]-y[j]));
}
ans=s-node/+;
printf("%.10f\n",ans);
return ;
}

codeforces 559D Randomizer的更多相关文章

  1. python爬虫学习(5) —— 扒一下codeforces题面

    上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...

  2. 【Codeforces 738D】Sea Battle(贪心)

    http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...

  3. 【Codeforces 738C】Road to Cinema

    http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...

  4. 【Codeforces 738A】Interview with Oleg

    http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...

  5. CodeForces - 662A Gambling Nim

    http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...

  6. CodeForces - 274B Zero Tree

    http://codeforces.com/problemset/problem/274/B 题目大意: 给定你一颗树,每个点上有权值. 现在你每次取出这颗树的一颗子树(即点集和边集均是原图的子集的连 ...

  7. CodeForces - 261B Maxim and Restaurant

    http://codeforces.com/problemset/problem/261/B 题目大意:给定n个数a1-an(n<=50,ai<=50),随机打乱后,记Si=a1+a2+a ...

  8. CodeForces - 696B Puzzles

    http://codeforces.com/problemset/problem/696/B 题目大意: 这是一颗有n个点的树,你从根开始游走,每当你第一次到达一个点时,把这个点的权记为(你已经到过不 ...

  9. CodeForces - 148D Bag of mice

    http://codeforces.com/problemset/problem/148/D 题目大意: 原来袋子里有w只白鼠和b只黑鼠 龙和王妃轮流从袋子里抓老鼠.谁先抓到白色老鼠谁就赢. 王妃每次 ...

随机推荐

  1. 推荐使用MarkdownPad2进行Markdown写作

    笔者更推荐使用notepad++写markdown Atom也有Bug,还是Visual Studio Code好用. 去官网下载MarkdownPad2的安装包,并安装之. 如果你是Windows ...

  2. jQuery 动态添加、删除css样式

    1.addClass css中: <style type="text/css">       .chColor {background: #267cb7;color:w ...

  3. python3入门之基础语法

    Python 是一个高层次的结合了解释性.编译性.互动性和面向对象的脚本语言.Python 的设计具有很强的可读性,相比其他语言经常使用英文关键字,其他语言的一些标点符号,它具有比其他语言更有特色语法 ...

  4. [Java聊天室server]实战之三 接收循环

    前言 学习不论什么一个稍有难度的技术,要对其有充分理性的分析,之后果断做出决定---->也就是人们常说的"多谋善断":本系列尽管涉及的是socket相关的知识.但学习之前,更 ...

  5. js中的对象类型的基本操作

    示例 /** * 对象属于一种复合数据类型,在对象中可以保存多个不同数据类型的属性 * 对象的分类: * 1.内建对象 * - 由ES标准定义的对象,在任何ES的实现中都可以使用,比如:Math, * ...

  6. Java JNA (二)—— dll回调函数实现

    java调用dll文件需要使用回调函数作为公开函数的参数时,用以下方法实现: 首先,看c++中定义的dll公开函数: typedef void (*ccback)(char *name ,int le ...

  7. 98-基于FPGA Spartan6 的双路光纤PCIe采集卡(2路光纤卡)

    基于FPGA Spartan6 的双路光纤PCIe采集卡(2路光纤卡) 1.板卡概述  板卡采用xilinx Spartan6系列芯片,支持 PCI Express Base Specificatio ...

  8. Linux学习笔记之目录配置

    一.目录配置 相关目录说明 /bin              二进制文件 /boot           系统启动文件(内核的初始化文件等) /dev            设备文件(硬盘等) /e ...

  9. [CSS布局]简单的CSS三列布局

    前言 公司终于可以上外网了,近期在搞RN的东西,暂时脑子有点晕,等过段时间再来写点总结.倒是最近有个新学前端的同学经常会问一些基础知识,工作空闲写了小Demo给他看,全是很基础的知识,纯粹是顺便记录在 ...

  10. [算法学习]开始leetcode之旅

    在此记录一下用javascript刷leetcode的过程,每天都要坚持! 1.Two Sum Given an array of integers, find two numbers such th ...