题意:给你一张无向图,要求对这张图进行删边操作,要求删边之后的图的总边数 >= ceil((n + m) / 2), 每个点的度数 >= ceil(deg[i] / 2)。(deg[i]是原图中i的度数)

思路1:模拟 + 乱搞

直接暴力删就行了,读入边之后随机打乱一下就很难被hack了。

代码:

#include <bits/stdc++.h>
#define LL long long
#define INF 0x3f3f3f3f
#define db double
#define pii pair<int, int>
using namespace std;
const int maxn = 1000010;
struct node {
int u, v, id;
};
vector<node> G;
int deg[maxn], limit[maxn], a[maxn];
pii b[maxn];
const LL mod = 1e9 + 7;
LL add(LL x, LL y) {return (x + y) % mod;}
LL mul(LL x, LL y) {return (x * y) % mod;}
bool vis[maxn];
bool cmp(int x, int y) {
return deg[x] > deg[y];
}
int main() {
int n, m, u, v;
scanf("%d%d", &n, &m);
int tot_limit = (n + m + 1) / 2;
for (int i = 1; i <= m; i++) {
scanf("%d%d", &u, &v);
// G[u].push_back((node){u, v, i});
// G[v].push_back((node){v, u, i});
G.push_back((node){u, v, i});
deg[u]++;
deg[v]++;
}
for (int i = 1; i <= n; i++) {
limit[i] = (deg[i] + 1) / 2;
}
random_shuffle(G.begin(), G.end());
int ans = m;
for (int j = 0; j < G.size() && ans > tot_limit; j++) {
int v = G[j].v, now = G[j].u;
if(deg[v] == limit[v]) continue;
if(deg[now] == limit[now]) continue;
vis[j] = 1;
ans--;
deg[v]--;
deg[now]--;
}
printf("%d\n", ans);
for (int i = 0; i < m; i++) {
if(vis[i]) continue;
printf("%d %d\n", G[i].u, G[i].v);
}
}

思路2(官方题解):新建0号点,把0号点和图中所有度数为奇数的点相连,形成一张新图。在新图上跑一遍欧拉回路,把欧拉回路记录的边中偶数位置的删掉,删的时候如果是新加的边,就直接删了。否则,看一下这条边相邻的两条边是不是新加的边并且可以删,如果可以,那就删新加的边,否则删这条边。即迫不得已的情况才会删除原图的边。

代码:

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1000010;
struct edge {
int u, v, flag;
}; int st[maxn * 2], ans[maxn * 2], re[maxn * 2];
edge a[maxn * 2];
int head[maxn], id[maxn * 4], Next[maxn * 4], ver[maxn * 4], tot, totm, tot_ans;
bool v[maxn * 4], vis[maxn * 4];
int deg[maxn];
int Top;
void add(int x, int y, int z) {
ver[++tot] = y, id[tot] = z, Next[tot] = head[x], head[x] = tot;
}
void euler (int s) {
tot_ans = 0;
st[++Top] = s;
while(Top > 0) {
int x = st[Top], i = head[x];
while(i && v[i]) i = Next[i];
if(i) {
st[++Top] = ver[i];
re[Top] = id[i];
v[i] = v[i ^ 1] = 1;
head[x] = Next[i];
} else {
ans[++tot_ans] = re[Top];
Top--;
}
}
}
int main() {
int n, m, x, y;
scanf("%d%d", &n, &m);
tot = 1;
for (int i = 1; i <= m; i++) {
scanf("%d%d", &x, &y);
totm++;
a[totm] = (edge){x, y, 1};
add(x, y, totm), add(y, x, totm);
deg[x]++, deg[y]++;
}
for (int i = 1; i <= n; i++) {
if(deg[i] & 1) {
totm++;
a[totm] = (edge){0, i, 0};
add(0, i, totm), add(i, 0, totm);
}
}
int res = m;
for (int i = 0; i <= n; i++) {
euler(i);
for (int j = 2; j <= tot_ans; j += 2) {
int now = ans[j];
if(a[now].flag == 0) vis[now] = 1;
else {
int tmp = ans[j - 1];
if(a[tmp].flag == 0 && vis[tmp] == 0) {
vis[tmp] = 1;
continue;
}
int Next = j + 1;
if(j == tot_ans) Next = 1;
tmp = ans[Next];
if(a[tmp].flag == 0 && vis[tmp] == 0) {
vis[tmp] = 1;
continue;
}
vis[now] = 1;
res--;
}
}
}
printf("%d\n", res);
for (int i = 1; i <= totm; i++) {
if(vis[i] == 0) {
if(a[i].flag == 1) {
printf("%d %d\n", a[i].u, a[i].v);
}
}
}
}
//6 6
//3 4
//4 5
//5 3
//1 3
//1 2
//2 3

Codeforces 1186F - Vus the Cossack and a Graph 模拟乱搞/欧拉回路的更多相关文章

  1. @codeforces - 1186F@ Vus the Cossack and a Graph

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个 n 点 m 边的图(n, m<=10^6),记第 ...

  2. Codeforces F. Vus the Cossack and Numbers(贪心)

    题目描述: D. Vus the Cossack and Numbers Vus the Cossack has nn real numbers aiai. It is known that the ...

  3. codeforces 1186C Vus the Cossack and Strings

    题目链接:https://codeforc.es/contest/1186/problem/C 题目大意:xxxxx(自认为讲不清.for instance) 例如:a="01100010& ...

  4. codeforces 658C C. Bear and Forgotten Tree 3(tree+乱搞)

    题目链接: C. Bear and Forgotten Tree 3 time limit per test 2 seconds memory limit per test 256 megabytes ...

  5. Codeforces 193E - Fibonacci Number(打表找规律+乱搞)

    Codeforces 题目传送门 & 洛谷题目传送门 蠢蠢的我竟然第一眼想套通项公式?然鹅显然 \(5\) 在 \(\bmod 10^{13}\) 意义下并没有二次剩余--我真是活回去了... ...

  6. Codeforces Round #493 (Div. 2) C. Convert to Ones 乱搞_构造_好题

    题意: 给你一个长度为 nnn 的 010101串 ,你有两种操作: 1.将一个子串翻转,花费 XXX 2.将一个子串中的0变成1,1变成0,花费 YYY 求你将这个01串变成全是1的串的最少花费. ...

  7. CodeForces - 1186 C. Vus the Cossack and Strings (异或)

    Vus the Cossack has two binary strings, that is, strings that consist only of "0" and &quo ...

  8. Vus the Cossack and Strings(Codeforces Round #571 (Div. 2))(大佬的位运算实在是太强了!)

    C. Vus the Cossack and Strings Vus the Cossack has two binary strings, that is, strings that consist ...

  9. Codeforces Round #571 (Div. 2)-D. Vus the Cossack and Numbers

    Vus the Cossack has nn real numbers aiai. It is known that the sum of all numbers is equal to 00. He ...

随机推荐

  1. find命令使用详解

    一.主要内容 ====================================== 1. 用文件名查找文件 2.用文件名查找文件,忽略大小写 3. 使用mindepth和maxdepth限定搜 ...

  2. SpringBoot---缓存支持Cache

    1.概述 1.1.在  Spring中使用缓存技术   的  关键   是配置CacheManager: SpringBoot为我们   自动配置了多个  CacheManager实现: Spring ...

  3. Cytoscape软件简介

    • Cytoscape一款开源的网络显示和分析软件. 软件的核心部分提供了 网络显示.布局.查询等方面的基本功能. • Cytoscape源自系统生物学,通过Cytoscape,用户可以在可视化的 环 ...

  4. postgresql创建表

    创建表时候有些方法:https://blog.csdn.net/qq_16605855/article/details/78905193

  5. jquery 自定义类

    jQuery自定义类封装: (function ($) { $.DragField = function (arg) { var name = "你好"; //这个是私有变量,外部 ...

  6. nRF51822 蓝牙低功耗和 2.4GHz 专利 SoC

    DESCRIPTION nRF51822 是功能强大.高灵活性的多协议 SoC,非常适用于 Bluetooth® 低功耗和 2.4GHz 超低功耗无线应用. nRF51822 基于配备 256kB f ...

  7. springBoot JPA PageAble分页查询出错,PropertyReferenceException: No property creation found for type

    PropertyReferenceException: No property creation found for type @RequestParam(required = false, defa ...

  8. /proc/interrupts /proc/stat 查看中断信息

    /proc/interrupts列出当前所以系统注册的中断,记录中断号,中断发生次数,中断设备名称 如下图:从左至右:中断号   中断次数  中断设备名称 从上图可知中断号为19的arch_timer ...

  9. xcodebuild自动打包上传到蒲公英的shell脚本

    注意: ExportOptions.plist (包含了证书相关信息) 该plist 文件可以通过xcode手动导出ipa之后获取到, 区分appstore 和 development的情况 #! / ...

  10. JarvisOJ 逆向Writeup

    1. 爬楼梯 先运行apk,查看具体的功能 爬一层楼是可以点击的,爬到了,看FLAG是不可以点击的.我们可以大致的了解到到了具体的楼层才可以看到flag,多次打开软件,楼层数目是随机的. 用APKID ...