搬运: https://stackoverflow.com/questions/57610804/when-is-the-timing-to-use-sample-weights-in-keras

import tensorflow as tf
import numpy as np data_size = 100
input_size=3
classes=3 x_train = np.random.rand(data_size ,input_size)
y_train= np.random.randint(0,classes,data_size )
#sample_weight_train = np.random.rand(data_size)
x_val = np.random.rand(data_size ,input_size)
y_val= np.random.randint(0,classes,data_size )
#sample_weight_val = np.random.rand(data_size ) inputs = tf.keras.layers.Input(shape=(input_size))
pred=tf.keras.layers.Dense(classes, activation='softmax')(inputs) model = tf.keras.models.Model(inputs=inputs, outputs=pred) loss = tf.keras.losses.sparse_categorical_crossentropy
metrics = tf.keras.metrics.sparse_categorical_accuracy model.compile(loss=loss , metrics=[metrics], optimizer='adam') # Make model static, so we can compare it between different scenarios
for layer in model.layers:
layer.trainable = False # base model no weights (same result as without class_weights)
# model.fit(x=x_train,y=y_train, validation_data=(x_val,y_val))
class_weights={0:1.,1:1.,2:1.}
model.fit(x=x_train,y=y_train, class_weight=class_weights, validation_data=(x_val,y_val))
# which outputs:
> loss: 1.1882 - sparse_categorical_accuracy: 0.3300 - val_loss: 1.1965 - val_sparse_categorical_accuracy: 0.3100 #changing the class weights to zero, to check which loss and metric that is affected
class_weights={0:0,1:0,2:0}
model.fit(x=x_train,y=y_train, class_weight=class_weights, validation_data=(x_val,y_val))
# which outputs:
> loss: 0.0000e+00 - sparse_categorical_accuracy: 0.3300 - val_loss: 1.1945 - val_sparse_categorical_accuracy: 0.3100 #changing the sample_weights to zero, to check which loss and metric that is affected
sample_weight_train = np.zeros(100)
sample_weight_val = np.zeros(100)
model.fit(x=x_train,y=y_train,sample_weight=sample_weight_train, validation_data=(x_val,y_val,sample_weight_val))
# which outputs:
> loss: 0.0000e+00 - sparse_categorical_accuracy: 0.3300 - val_loss: 1.1931 - val_sparse_categorical_accuracy: 0.3100

class_weight: output 变量的权重

sample_weight: data sample 的权重

Keras class_weight和sample_weight用法的更多相关文章

  1. keras中TimeDistributed的用法

    TimeDistributed这个层还是比较难理解的.事实上通过这个层我们可以实现从二维像三维的过渡,甚至通过这个层的包装,我们可以实现图像分类视频分类的转化. 考虑一批32个样本,其中每个样本是一个 ...

  2. Keras 学习之旅(一)

    软件环境(Windows): Visual Studio Anaconda CUDA MinGW-w64 conda install -c anaconda mingw libpython CNTK ...

  3. Keras官方中文文档:函数式模型API

    \ 函数式模型接口 为什么叫"函数式模型",请查看"Keras新手指南"的相关部分 Keras的函数式模型为Model,即广义的拥有输入和输出的模型,我们使用M ...

  4. Keras官方中文文档:序贯模型API

    Sequential模型接口 如果刚开始学习Sequential模型,请首先移步这里阅读文档,本节内容是Sequential的API和参数介绍. 常用Sequential属性 model.layers ...

  5. keras系列︱Sequential与Model模型、keras基本结构功能(一)

    引自:http://blog.csdn.net/sinat_26917383/article/details/72857454 中文文档:http://keras-cn.readthedocs.io/ ...

  6. Python机器学习笔记:深入理解Keras中序贯模型和函数模型

     先从sklearn说起吧,如果学习了sklearn的话,那么学习Keras相对来说比较容易.为什么这样说呢? 我们首先比较一下sklearn的机器学习大致使用流程和Keras的大致使用流程: skl ...

  7. 深度学习(六)keras常用函数学习

    原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/9769301.html Keras是什么? Keras:基于Theano和TensorFlow的 ...

  8. Keras(一)Sequential与Model模型、Keras基本结构功能

    keras介绍与基本的模型保存 思维导图 1.keras网络结构 2.keras网络配置 3.keras预处理功能 模型的节点信息提取 config = model.get_config() 把mod ...

  9. Keras Model Sequential模型接口

    Sequential 模型 API 在阅读这片文档前,请先阅读 Keras Sequential 模型指引. Sequential 模型方法 compile compile(optimizer, lo ...

随机推荐

  1. CTF—WEB—sql注入之无过滤有回显最简单注入

    sql注入基础原理 一.Sql注入简介 Sql 注入攻击是通过将恶意的 Sql 查询或添加语句插入到应用的输入参数中,再在后台 Sql 服务器上解析执行进行的攻击,它目前黑客对数据库进行攻击的最常用手 ...

  2. 逻辑回归2-scikit-learn参数介绍

    1.1     scikit-learn参数介绍 1.1.1  导入 from sklearn.linear_model import LogisticRegression 1.1.2  版本 sci ...

  3. show slave status参数详解

    root@localhost (none)>show slave status\G *************************** 1. row ******************** ...

  4. Neo4j下载与使用

    Neo4j 官网 : https://neo4j.com/ Neo4j 国内: http://neo4j.com.cn/topic/5b003eae9662eee704f31cee http://we ...

  5. [转帖]基于VIM漏洞CVE-2019-12735的VIM宏后门病毒详解

    基于VIM漏洞CVE-2019-12735的VIM宏后门病毒详解 不明觉厉 只要是人做的东西 就会有bug 就会有安全问题 就看发现bug 或者是发现安全问题 有没有收益了 会用linux的都是比较熟 ...

  6. 插座-网络问题-ESP8266

    //ATK-ESP8266模块测试主函数,检查WIFI模块是否在线 void atk_8266_test(void) { ))//检查WIFI模块是否在线 { atk_8266_quit_trans( ...

  7. Nginx_Ubuntu

    一. 基本步骤 1.1 环境准备 开始前,请确认gcc g++开发类库是否装好,默认已经安装. 注: 等待linux下载更新功能准备好了 重启系统 在执行下载安装命令,如执行命令没有问题可以继续往下走 ...

  8. C++中的异常处理(上)

    1,C++ 内置了异常处理的语法元素 try ... catch ...: 1,try 语句处理正常代码逻辑: 2,catch 语句处理异常情况: 3,try 语句中的异常由对应的 catch 语句处 ...

  9. jQuery-点击按钮页面滚动到顶部,底部,指定位置

    $('.scroll_top').click(function(){$('html,body').animate({scrollTop: '0px'}, 800);}); //页面滚动至顶部 $('. ...

  10. Python sklearn拆分训练集、测试集及预测导出评分 决策树

    机器学习入门 (注:无基础可快速入门,想提高准确率还得多下功夫,文中各名词不做过多解释) Python语言.pandas包.sklearn包   建议在Jupyter环境操作 操作步骤 1.panda ...