分析

Kiana最近沉迷于一款神奇的游戏无法自拔。 简单来说,这款游戏是在一个平面上进行的。 有一架弹弓位于 (0, 0) 处,每次Kiana可以用它向第一象限发射一只红色的小鸟, 小鸟们的飞行轨迹均为形如 y = ax2 + bx 的曲线,其中 a, b 是Kiana指定的参数,且必须 满足 a < 0 。 当小鸟落回地面(即 x 轴)时,它就会瞬间消失。 在游戏的某个关卡里,平面的第一象限中有 n 只绿色的小猪,其中第 i 只小猪所在的坐标为 (xi, yi) 。 如果某只小鸟的飞行轨迹经过了 (xi, yi) ,那么第 i 只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行; 如果一只小鸟的飞行轨迹没有经过 (xi, yi) ,那么这只小鸟飞行的全过程就不会对 第 i 只小猪产生任何影响。 例如,若两只小猪分别位于 (1, 3) 和 (3, 3) ,Kiana可以选择发射一只飞行轨迹为y = −x2 + 4x 的小鸟,这样两只小猪就会被这只小鸟一起消灭。 而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。 这款神奇游戏的每个关卡对Kiana来说都很难,所以Kiana还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。 这些指令将在【输入格式】中详述。 假设这款游戏一共有 T 个关卡,现在Kiana想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。 由于她不会算,所以希望由你告诉她。

分析

首先先求出每个点两两之间的函数解析式,并且求出这个解析式还能消灭那只猪。

状压背包,

设\(f_s\)表示状态为s的最小值(其中s为二进制数,表示每只猪有没有被消灭)

转移方程很简单\(f_{s|s`}=min(f_{s|s`},f_s+1)\)

时间复杂度\(O(2^n·n^2)\)

对了,注意精度

#include <cmath>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <queue>
const int maxlongint=2147483647;
const int mo=1000000007;
const int N=550005;
using namespace std;
int f[N],b[20][20],n,m,t,d[500],mi[N];
double a[N][2],a1,b1;
int min1(int x,int y)
{
return x>y?y:x;
}
int main()
{
freopen("angrybirds.in","r",stdin);
freopen("angrybirds.out","w",stdout);
mi[0]=1;
for(int i=1;i<=20;i++)
{
mi[i]=mi[i-1]*2;
}
scanf("%d",&t);
for(;t--;)
{
scanf("%d%d",&n,&m);
memset(b,0,sizeof(b));
memset(f,43,sizeof(f));
f[0]=0;
for(int i=1;i<=n;i++)
scanf("%lf%lf",&a[i][0],&a[i][1]);
for(int i=1;i<=n;i++)
{
b[i][i]=mi[i-1];
for(int j=1;j<=n;j++)
if(i!=j)
{
double y=a[i][1],y1=a[j][1],x=a[i][0],x1=a[j][0],xx=a[i][0]*a[i][0],xx1=a[j][0]*a[j][0];
a1=b1=0;
y*=xx1;
x*=xx1;
y1*=xx;
x1*=xx;
y-=y1;
x-=x1;
b1=y/x;
a1=(a[i][1]-a[i][0]*b1)/(a[i][0]*a[i][0]);
if(a1>=0) continue;
b[i][j]=mi[i-1]+mi[j-1];
for(int k=1;k<=n;k++)
if(k!=i && k!=j)
{
if(a[k][1]-a[k][0]*a[k][0]*a1-a[k][0]*b1<=0.000000000001 && a[k][1]-a[k][0]*a[k][0]*a1-a[k][0]*b1>=-0.000000000001)
{
b[i][j]+=mi[k-1];
}
}
}
}
d[0]=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
bool q=true;
if(f[b[i][j]]==1 || b[i][j]==0) continue;
for(int k=1;k<=n && q;k++)
for(int l=1;l<=n && q;l++)
if((b[i][j]&b[k][l])>=b[i][j] && b[i][j]!=b[k][l]) q=false;
if(q) d[++d[0]]=b[i][j],f[b[i][j]]=1;
}
for(int i=1;i<=d[0];i++)
for(int s=0;s<=mi[n]-1;s++)
{
f[s|d[i]]=min1(f[s|d[i]],f[s]+1);
}
printf("%d\n",f[mi[n]-1]);
}
}

【NOIP2016提高组day2】愤怒的小鸟的更多相关文章

  1. Noip2016 提高组 Day2 T1 组合数问题

    题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...

  2. 【NOIP2016提高组day2】蚯蚓

    那么我们开三个不上升队列, 第一个记录原来的蚯蚓, 第二个记录乘以p的蚯蚓 第三个记录乘以(1-p)的蚯蚓, 在记录每条就要入队列的时间,就可以求出增加的长度 每次比较三个队列的队首,取最大的值x的切 ...

  3. 【NOIP2016提高组】愤怒的小鸟

    https://www.luogu.org/problem/show?pid=2831 BFS 看到N这么小就可以想到搜索,求最少步数显然应该用BFS. 在这题中过两猪可以唯一确定一条抛物线,每一步可 ...

  4. 【题解】NOIP2016提高组 复赛

    [题解]NOIP2016提高组 复赛 传送门: 玩具谜题 \(\text{[P1563]}\) 天天爱跑步 \(\text{[P1600]}\) 换教室 \(\text{[P1850]}\) 组合数问 ...

  5. 【题解】NOIP2016 提高组 简要题解

    [题解]NOIP2016 提高组 简要题解 玩具迷题(送分) 用异或实现 //@winlere #include<iostream> #include<cstdio> #inc ...

  6. NOIP2016提高组解题报告

    NOIP2016提高组解题报告 更正:NOIP day1 T2天天爱跑步 解题思路见代码. NOIP2016代码整合

  7. 18/9/16牛客网提高组Day2

    牛客网提高组Day2 T1 方差 第一眼看就知道要打暴力啊,然而并没有想到去化简式子... 可能因为昨晚没睡好,今天上午困死 导致暴力打了一个半小时,还不对... #include <algor ...

  8. [日记&做题记录]-Noip2016提高组复赛 倒数十天

    写这篇博客的时候有点激动 为了让自己不颓 还是写写日记 存存模板 Nov.8 2016 今天早上买了两个蛋挞 吃了一个 然后就做数论(前天晚上还是想放弃数论 但是昨天被数论虐了 woc noip模拟赛 ...

  9. 2013 Noip提高组 Day2

    3288积木大赛 正文 题目描述 春春幼儿园举办了一年一度的“积木大赛”.今年比赛的内容是搭建一座宽度为n的大厦,大厦可以看成由n块宽度为1的积木组成,第i块积木的最终高度需要是hi. 在搭建开始之前 ...

随机推荐

  1. 【MM系列】SAP S/4 HANA 1511的BP角色创建及供应商数据的创建方法

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP S/4 HANA 1511的 ...

  2. cocos2dx基础篇(24) 场景切换效果CCTransitionScene

    [3.x]     (1)去掉 "CC"     (2)卡牌翻转 TransitionFlip 中的样式 tOrientation // //1: kCCTransitionOri ...

  3. Python学习之GIL&进程池/线程池

    8.6 GIL锁** Global interpreter Lock 全局解释器锁 实际就是一把解释器级的互斥锁 In CPython, the global interpreter lock, or ...

  4. python学习之生成器

    4.6 生成器Generrator ​ 生成器本质就是迭代器.python社区生成器与迭代器是一种. ​ 生成器与迭代器的唯一区别:生成器是我们自己用python代码构建的 4.6.1生成器初识 py ...

  5. spring boot1.1 idea + springboot + mybatis(mybatis-generator) +mysql +html实现简单的登录注册

    前言 这两年springboot比较火,而我平时的工作中不怎么使用spring boot,所以工作之余就自己写写项目练练手,也跟大家一起学习. 打算从最开始的搭架子,登录注册,到后台管理的增删改查,业 ...

  6. springcloud用法

    springcloud用法 使用springcloud搭建微服务肯定要在父工程下面编写子工程 一.搭建eureka注册中心 1.    创建maven项目(在springboot项目下建立子工程eur ...

  7. C++ 内联函数 inline关键字

    inline 关键字主要功能是为了 代替掉 宏代码片段. 在C++中使用关键字inline关键字声明内联函数. inline int fun(int a,int b) { return a < ...

  8. 前端页面适配的rem换算 为什么要使用rem

    之前有些适配做法,是通过js动态计算viewport的缩放值(initial-scale). 例如以屏幕320像素为基准,设置1,那屏幕375像素就是375/320=1.18以此类推. 但直接这样强制 ...

  9. Jquery复习(十)之$.fn.extend()

    定义和用法 $.fn.extend() 函数为jQuery扩展一个或多个实例属性和方法(主要用于扩展方法). 提示:jQuery.fn是jQuery的原型对象,其extend()方法用于为jQuery ...

  10. ArrayList实现原理分析

    ArrayList使用的存储的数据结构 ArrayList的初始化 ArrayList是如何动态增长 ArrayList如何实现元素的移除 ArrayList小结 ArrayList是我们经常使用的一 ...