Qin Shi Huang's National Road System

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 10874    Accepted Submission(s): 3846

Problem Description
During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in China ---- they were Qi, Chu, Yan, Han, Zhao, Wei and Qin. Ying Zheng was the king of the kingdom Qin. Through 9 years of wars, he finally conquered all six other kingdoms and became the first emperor of a unified China in 221 BC. That was Qin dynasty ---- the first imperial dynasty of China(not to be confused with the Qing Dynasty, the last dynasty of China). So Ying Zheng named himself "Qin Shi Huang" because "Shi Huang" means "the first emperor" in Chinese.

Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
 
Input
The first line contains an integer t meaning that there are t test cases(t <= 10).
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
 
Output
For each test case, print a line indicating the above mentioned maximum ratio A/B. The result should be rounded to 2 digits after decimal point.
 
Sample Input
2
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
 
Sample Output
65.00
70.00
 
Source
 
Recommend
lcy
 
本题思路:利于最小生成树得到次小生成树的思路,先求出最小生成树和图中每两个顶点之间路径的最大值,然后对于每一条边运算A / B 即可。这里需要注意的是需要对每一条边进行测试(想想为什么?)。
参考代码:
 #include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn = + , maxe = * / + , INF = 0x3f3f3f3f;
int n, m, head[maxn];
double Max[maxn][maxn];
struct City {
int u, v, population;
}city[maxn];
struct Edge{
int u, v, population;
double w;
bool vis;
}edge[maxe];
vector <int> G[maxn]; bool cmp(const Edge &a, const Edge &b) {
return a.w < b.w;
} int Find(int x) {
if(x == head[x]) return x;
else return head[x] = Find(head[x]);
} double Distance(int i, int j) {
int x1 = city[i].u, y1 = city[i].v,
x2 = city[j].u, y2 = city[j].v;
return sqrt((double)(x2 - x1) * (x2 - x1) + (double)(y2 - y1) * (y2 - y1));
} double Kruskal() {
int cnt = ;
double ans = ;
sort(edge + , edge + m + , cmp);
for(int i = ; i <= n; i ++) {
G[i].clear();
G[i].push_back(i);
head[i] = i;
}
for(int i = ; i <= m; i ++) {
int fx = Find(edge[i].u), fy = Find(edge[i].v);
if(cnt == n - ) break;
if(fx != fy) {
edge[i].vis = true;
ans += edge[i].w;
cnt ++;
int len_fx = G[fx].size(), len_fy = G[fy].size();
for(int j = ; j < len_fx; j ++) {
for(int k = ; k < len_fy; k ++) {
Max[G[fx][j]][G[fy][k]] = Max[G[fy][k]][G[fx][j]] = edge[i].w;
}
}
head[fx] = fy;
for(int j = ; j < len_fx; j ++) {
G[fy].push_back(G[fx][j]);
}
}
}
if(cnt < n - ) return INF;
return ans;
} double Second_Kruskal(double MST) {
double ans = ;
for(int i = ; i <= m; i ++) {
ans = max(ans, edge[i].population / (MST - Max[edge[i].u][edge[i].v]));
}
return ans;
} int main () {
int t;
scanf("%d", &t);
while(t --) {
m = ;
scanf("%d", &n);
for(int i = ; i <= n; i ++) {
scanf("%d %d %d", &city[i].u, &city[i].v, &city[i].population);
}
for(int i = ; i <= n - ; i ++) {
for(int j = i + ; j <= n; j ++) {
edge[++m].u = i;
edge[m].v = j;
edge[m].vis = false;
edge[m].population = city[i].population + city[j].population;
edge[m].w = Distance(i, j);
}
}
double MST = Kruskal();
double ans = Second_Kruskal(MST);
printf("%.2f\n", ans);
}
return ;
}

HDU-4081.Qinshihuang'sNationalRoadSystem(次小生成树变种)的更多相关文章

  1. HDU 4081 Qin Shi Huang's National Road System 次小生成树变种

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  2. hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...

  3. hdu 4081 Qin Shi Huang's National Road System (次小生成树)

    Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/3 ...

  4. HDU 4081 Qin Shi Huang's National Road System [次小生成树]

    题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...

  5. HDU 4081Qin Shi Huang's National Road System(次小生成树)

    题目大意: 有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点.秦始皇希望这所有n-1条路长度之和最短.然后徐福突然有冒出来,说是他有魔法,可以不用人力.财力就变 ...

  6. HDU 4756 Install Air Conditioning(次小生成树)

    题目大意:给你n个点然后让你求出去掉一条边之后所形成的最小生成树. 比較基础的次小生成树吧. ..先prime一遍求出最小生成树.在dfs求出次小生成树. Install Air Conditioni ...

  7. [kuangbin带你飞]专题八 生成树 - 次小生成树部分

    百度了好多自学到了次小生成树 理解后其实也很简单 求最小生成树的办法目前遇到了两种 1 prim 记录下两点之间连线中的最长段 F[i][k] 之后枚举两点 若两点之间存在没有在最小生成树中的边 那么 ...

  8. hdu4081 次小生成树变形

    pid=4081">http://acm.hdu.edu.cn/showproblem.php?pid=4081 Problem Description During the Warr ...

  9. kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数

    第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...

随机推荐

  1. 【洛谷P2398】GCD SUM

    题目大意:求 \[\sum\limits_{i=1}^n\sum\limits_{j=1}^ngcd(i,j)\] 题解: 最重要的一步变换在于. \[\sum\limits_{k=1}^n k \s ...

  2. 前端之JQuery:JQuery基本语法

    jQuery基本语法 一.jQuery基础1.为什么要用jquery? 写起来简单,省事,开发效率高,兼容性好2.什么是jQuery? jQuery是一个兼容多浏览器的JavaScript库(类似py ...

  3. window.open()的实际应用

    Window open() 方法 定义和用法 open() 方法用于打开一个新的浏览器窗口或查找一个已命名的窗口. 语法 window.open(URL,name,specs,replace) 参数 ...

  4. ESP8266-01

    我的模块购买地址  https://buyertrade.taobao.com/trade/detail/tradeSnap.htm?tradeID=460212770243341548&sn ...

  5. 【leetcode】1108. Defanging an IP Address

    题目如下: Given a valid (IPv4) IP address, return a defanged version of that IP address. A defanged IP a ...

  6. synchronized 与 lock 的区别

    synchronized 和 lock 的用法区别 synchronized(隐式锁):在需要同步的对象中加入此控制,synchronized 可以加在方法上,也可以加在特定代码块中,括号中表示需要锁 ...

  7. C# 基础:DataTable操作、发邮件

    本文出自:https://www.cnblogs.com/2186009311CFF/p/6865909.html DataTable操作 据参数删除为0的列:包括遍历.删除.取值 public st ...

  8. Linux常用命令学习记录

    兄弟连Linux培训 ,小编整理了常用的Linux学习命令: 1 cp 拷贝命令 参数:-p 文件属性一起拷贝 -r 拷贝文件夹 -d 软链信息等一起拷贝 -a 是-rdp的简写 2 find 文件查 ...

  9. JSP文件的上传和下载

    文件上传下载,与传统的方式不同,这里能够上传和下载10G以上的文件.而且支持断点续传. 通常情况下,我们在网站上面下载的时候都是单个文件下载,但是在实际的业务场景中,我们经常会遇到客户需要批量下载的场 ...

  10. Knapsack Cryptosystem

    Knapsack Cryptosystem 超大背包 折半查找 #include<bits/stdc++.h> using namespace std; typedef long long ...