参考:tensorflow书

1、模型的导出:

import tensorflow as tf
v1=tf.Variable(tf.constant(2.0),name="v1")
v2=tf.Variable(tf.constant(3.0),name="v2")
init_op=tf.global_variables_initializer()
saver=tf.train.Saver()
with tf.Session() as sess:
sess.run(init_op)
saver_path=saver.save(sess,"model.ckpt")
print("model saved in file:",saver_path)

2、模型的导入:

import tensorflow as tf
saver = tf.train.import_meta_graph("model.ckpt.meta")
with tf.Session() as sess:
saver.restore(sess, "model.ckpt")
print (sess.run(tf.get_default_graph().get_tensor_by_name("add:0")))

例1:模型的导入、导出的应用

import tensorflow as tf
var_1=tf.Variable(tf.constant([1,2],shape=[1,2]),name='var_1',dtype=tf.int32)
var_2=tf.placeholder(shape=[2,1],name='var_2',dtype=tf.int32)
var_3=tf.matmul(var_1,var_2,name='var_3')
with tf.Session() as sess:
saver=tf.train.Saver()
init=tf.global_variables_initializer()
sess.run(init)
saver.save(sess,'data.chkp')
saver=tf.train.import_meta_graph('data.chkp.meta')
predict=tf.get_default_graph().get_tensor_by_name('var_3:0')
sess.run(init)
print(predict.eval(session=sess,feed_dict={var_2:[[2],[2]]}))
with tf.Session() as sess:
saver.restore(sess,'data.chkp')
print(sess.run(var_3,feed_dict={var_2:[[5],[5]]}))

接上(若对变量名字作了改变,则在tf.train.Saver()中引入字典来作调整):

import tensorflow as tf
var_1=tf.Variable(tf.constant([1,2],shape=[1,2]),name='other_var_1')
var_2=tf.Variable(tf.constant([1,2],shape=[2,1]),name='other_var_2') #将上面代码的placeholder换成Variable
var_3=tf.matmul(var_1,var_2,name='var_3')
saver=tf.train.Saver({'var_1':var_1,'var_2':var_2})
with tf.Session() as sess:
saver.restore(sess,'data.chkp')
print(sess.run(var_3))

3、迭代的计数表示:

参考:http://blog.csdn.net/shenxiaolu1984/article/details/52815641

global_step = tf.Variable(0, trainable=False)
increment_op = tf.assign_add(global_step, tf.constant(1))
lr = tf.train.exponential_decay(0.1, global_step, decay_steps=1, decay_rate=0.9, staircase=False) #创建计数器衰减的tensor
tf.summary.scalar('learning_rate', lr) #对标量数据汇总和记录,把tensor添加到观测中
sum_ops = tf.summary.merge_all() #获取所有的操作
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
summary_writer = tf.train.SummaryWriter('/tmp/log/', sess.graph) #将监测结果输出目录
for step in range(0, 10): #迭代写入文件
   s_val = sess.run(sum_ops) # 获取serialized监测结果:bytes类型的字符串
   summary_writer.add_summary(s_val, global_step=step) # 写入文件
   sess.run(increment_op)

4、指数衰减法tf.train.exponential_decay()的使用

参考:http://blog.csdn.net/zsean/article/details/75196092

decayed_learning_rate=learining_rate*decay_rate^(global_step/decay_steps)     #每轮迭代通过乘以decay_rate来调整学习率值
global_step = tf.Variable(0)
learning_rate = tf.train.exponential_decay(0.1, global_step, 100, 0.96, staircase=True) #生成学习率,其中衰减率为0.96,每100轮巡检进行一次迭代,学习率乘以0.96
learning_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(....., global_step=global_step) #使用指数衰减学习率来进行梯度下降优化

注:Adam算法和传统的随机梯度下降不同。随机梯度下降保持单一的学习率(即alpha)更新所有的权重,学习率在训练过程中并不会改变。而Adam通过计算梯度的一阶矩估计和二阶矩估计而为不同的参数设计独立的自适应性学习率。

5、通过自己创建collection组织对象,来构建loss

import tensorflow as tf
x1=tf.constant(1.0)
l1=tf.nn.l2_loss(x1)
x2 = tf.constant([2.5, -0.3])
l2 = tf.nn.l2_loss(x2)
tf.add_to_collection('losses',l1) #通过手动指定一个collection来将创建的损失添加到集合
tf.add_to_collection("losses", l2)
losses=tf.get_collection('losses') #创建完成后统一获取所有损失,losses是一个tensor类型的list
loss_total=tf.add_n(losses) #把所有损失累加起来得到一个tensor
sess=tf.Session()
init=tf.global_variables_initializer()
sess.run(init)
sess.run(losses)
sess.run(loss_total)

6、tf.nn.embedding_lookup(embedding, self.input_x)的含义

该函数返回embedding中的第input_x行所对应的内容,并得到这些行所组成的tensor,如下图:

tensorflow函数介绍(2)的更多相关文章

  1. tensorflow函数介绍(4)

    1.队列的实现: import tensorflow as tf q=tf.FIFOQueue(2,'int32') #创建一个先进先出队列,指定队列中最多可以保存两个元素,并指定类型为整数. #先进 ...

  2. tensorflow函数介绍(3)

    tf.nn.softmax_cross_entropy_with_logits(logits,labels) #其中logits为神经网络最后一层输出,labels为实际的标签,该函数返回经过soft ...

  3. tensorflow函数介绍(1)

    tensorflow中的tensor表示一种数据结构,而flow则表现为一种计算模型,两者合起来就是通过计算图的形式来进行计算表述,其每个计算都是计算图上的一个节点,节点间的边表示了计算之间的依赖关系 ...

  4. tensorflow函数介绍 (5)

    1.tf.ConfigProto tf.ConfigProto一般用在创建session的时候,用来对session进行参数配置: with tf.Session(config=tf.ConfigPr ...

  5. Tensorflow | 基本函数介绍 简单详细的教程。 有用, 很棒

     http://blog.csdn.net/xxzhangx/article/details/54606040 Tensorflow | 基本函数介绍 2017-01-18 23:04 1404人阅读 ...

  6. python strip()函数 介绍

    python strip()函数 介绍,需要的朋友可以参考一下   函数原型 声明:s为字符串,rm为要删除的字符序列 s.strip(rm)        删除s字符串中开头.结尾处,位于 rm删除 ...

  7. PHP ob_start() 函数介绍

    ob_start() 函数介绍: http://www.nowamagic.net/php/php_ObStart.php ob_start()作用: http://zhidao.baidu.com/ ...

  8. Python开发【第三章】:Python函数介绍

    一. 函数介绍 1.函数是什么? 在学习函数之前,一直遵循面向过程编程,即根据业务逻辑从上到下实现功能,其往往用一长段代码来实现指定功能,开发过程中最常见的操作就是粘贴复制,也就是将之前实现的代码块复 ...

  9. row_number() OVER(PARTITION BY)函数介绍

      OVER(PARTITION BY)函数介绍 开窗函数               Oracle从8.1.6开始提供分析函数,分析函数用于计算基于组的某种聚合值,它和聚合函数的不同之处是:对于每个 ...

随机推荐

  1. python判断list中是否包含某个元素

    python判断list中是否包含某个元素 theList = ['a','b','c'] if 'a' in theList: print 'a in the list' if 'd' not in ...

  2. jmeter 命令行运行与生成报告

    一.     使用命令行方式运行Jmeter 1.1 为什么 使用GUI方式启动jmeter,运行线程较多的测试时,会造成内存和CPU的大量消耗,导致客户机卡死. 所以正确的打开方式是在GUI模式下调 ...

  3. MYSQL数据库中的查询语句

    查询的方法 *简单查询:select * from 表名 (* = 所有的) *读取特定列:select 字段一,字段二 from 表名 *条件查询:select * from 表名 where (多 ...

  4. Oracle-数据表对象

    表一般指的是一个关系表,也可以生成对象表以及临时表.齐总,对象表是通过用户定义的数据类型生成的,临时表用于存储专用于某个事务或会话的临时数据 字符类型: 定长:char (1-2000字节) 变长:v ...

  5. How to resolve error “Failed to resolve: org.jetbrains.kotlin:kotlin-stdlib-jre7…” when building in Android Studio Ask Question

    //implementation"org.jetbrains.kotlin:kotlin-stdlib-jre7:$kotlin_version" implementation & ...

  6. memcpy不能复制内存重叠区域,memmove可以拷贝重叠内存

    http://blog.csdn.net/li_ning_/article/details/51418400 下面s和s2指向的内存区域有重叠,memcpy不能正确复制,src赋值给dst时,可能会修 ...

  7. DbWrench002--建模以及数据正向工程和反向工程的具体操作

    DbWrench--建模以及数据正向工程和反向工程 参考博客:https://my.oschina.net/u/3459265/blog/1611999 一.数据正向工程 在建模工作中画好的表与表之间 ...

  8. python 爬虫之requests爬取页面图片的url,并将图片下载到本地

    大家好我叫hardy 需求:爬取某个页面,并把该页面的图片下载到本地 思考: img标签一个有多少种类型的src值?四种:1.以http开头的网络链接.2.以“//”开头网络地址.3.以“/”开头绝对 ...

  9. C# 身份证号码验证正则和验证函数

    做身份证验证的时候要求能够按照标准18位身份证验证,普通正则表达式不能满足需求,所以在网上找到了这个函数,很好用,虽然还是有漏洞,不过一般乱填的号码都能被屏蔽掉 身份证验证函数(标准18位验证) pr ...

  10. 如何配置JedisPool的参数

    转自:http://blog.csdn.net/huahuagongzi99999/article/details/13631579 如何配置Pool的参数 JedisPool的配置参数很大程度上依赖 ...