Hetergeneous Treatment Effect旨在量化实验对不同人群的差异影响,进而通过人群定向/数值策略的方式进行差异化实验,或者对实验进行调整。Double Machine Learning把Treatment作为特征,通过估计特征对目标的影响来计算实验的差异效果。

Machine Learning擅长给出精准的预测,而经济学更注重特征对目标影响的无偏估计。DML把经济学的方法和机器学习相结合,在经济学框架下用任意的ML模型给出特征对目标影响的无偏估计

HTE其他方法流派详见因果推理的春天-实用HTE论文GitHub收藏

核心论文

V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and a. W. Newey. Double Machine Learning for Treatment and Causal Parameters. ArXiv e-prints 文章链接

背景

HTE问题可以用以下的notation进行简单的抽象

  • Y是实验影响的核心指标
  • T是treatment,通常是0/1变量,代表样本进入实验组还是对照组,对随机AB实验\(T \perp X\)
  • X是Confounder,可以简单理解为未被实验干预过的用户特征,通常是高维向量
  • DML最终估计的是\(\theta(x)\),也就是实验对不同用户核心指标的不同影响

\[
\begin{align}
Y &= \theta(x) T + g(X) + \epsilon &\text{where }E(\epsilon |T,X) = 0 \\
T &= f(X) + \eta &\text{where } E(\eta|X) = 0 \\
\end{align}
\]

最直接的方法就是用X和T一起对Y建模,直接估计\(\theta(x)\)。但这样估计出的\(\theta(x)\)往往是有偏的,偏差部分来自于对样本的过拟合,部分来自于\(\hat{g(X)}\)估计的偏差,假定\(\theta_0\)是参数的真实值,则偏差如下

\[
\sqrt{n}(\hat{\theta}-\theta_0) = (\frac{1}{n}\sum{T_i^2})^{-1}\frac{1}{\sqrt{n}}\sum{T_iU_i} +(\frac{1}{n}\sum{T_i^2})^{-1}(\frac{1}{\sqrt{n}}\sum{T_i(g(x_i) -\hat{g(x_i)})})
\]

DML模型

DML模型分为以下三个步骤

步骤一. 用任意ML模型拟合Y和T得到残差\(\tilde{Y},\tilde{T}\)

\[
\begin{align}
\tilde{Y} &= Y - l(x) &\text{ where } l(x) = E(Y|x)\\
\tilde{T} &= T - m(x) &\text{ where } m(x) = E(T|x)\\
\end{align}
\]

步骤二. 对\(\tilde{Y},\tilde{T}\)用任意ML模型拟合\(\hat{\theta}\)

\(\theta(X)\)的拟合可以是参数模型也可以是非参数模型,参数模型可以直接拟合。而非参数模型因为只接受输入和输出所以需要再做如下变换,模型Target变为\(\frac{\tilde{Y}}{\tilde{T}}\), 样本权重为\(\tilde{T}^2\)

\[
\begin{align}
& \tilde{Y} = \theta(x)\tilde{T} + \epsilon \\
& argmin E[(\tilde{Y} - \theta(x) \cdot \tilde{T} )^2]\\
&E[(\tilde{Y} - \theta(x) \cdot \tilde{T} )^2] = E(\tilde{T}^2(\frac{\tilde{Y}}{\tilde{T}} - \theta(x))^2)
\end{align}
\]

步骤三. Cross-fitting

DML保证估计无偏很重要的一步就是Cross-fitting,用来降低overfitting带来的估计偏差。先把总样本分成两份:样本1,样本2。先用样本1估计残差,样本2估计\(\hat{\theta}^1\),再用样本2估计残差,样本1估计$ \hat{\theta}^2$,取平均得到最终的估计。当然也可以进一步使用K-Fold来增加估计的稳健性。
\[
\begin{align}
sample_1, sample_2 &= \text{sample_split} \\
\theta &= \hat{\theta}^1 + \hat{\theta}^2 \\
\end{align}
\]

Jonas在他的博客里比较了不使用DML,使用DML但是不用Cross-fitting,以及使用Cross-fitting的估计效果如下

从GMM的角度来理解

Generalized Method of Moments广义矩估计 (GMM)在经济学领域用的更多,在论文里乍一看到moment condition琢磨半天也没想起来,索性在这里简单的回顾下GMM的内容。

啥是矩估计呢?可以简单理解是用样本的分布特征来估计总计分布,分布特征由\(E((x-a)^K)\),样本的K阶矩来抽象,一阶矩就是均值,二阶原点矩就是方差。举几个例子吧~

例如,总体样本服从\(N(\mu, \sigma^2)\)就有两个参数需要估计,那么就需要两个方程来解两个未知数,既一阶矩条件\(\sum{x_i}-\mu=0\)和二阶矩条件\(\sum{x_i^2} - \mu^2 - \sigma^2=0\)。

再例如OLS,\(Y=\beta X\)可以用最小二乘法来求解\(argmin (Y-\beta X)^2\),但同样可以用矩估计来求解\(E(X(Y-\beta X))=0\)。实则最小二乘只是GMM的一个特例。

那针对HTE问题,我们应该选择什么样的矩条件来估计\(\theta\)呢?
直接估计\(\theta\)的矩条件如下
\(E(T(Y-T\theta_0-\hat{g_0(x)}))=0\)
DML基于残差估计的矩条件如下
\(E([(Y-E(Y|X))-(T-E(T|X))\theta_0](T-E(T|X)))=0\)

作者指出DML的矩条件服从Neyman orthogonality条件,因此即便\(g(x)\)估计有偏,依旧可以得到无偏的\(\theta\)的估计。


参考材料&开源代码

  1. V. Chernozhukov, M. Goldman, V. Semenova, and M. Taddy. Orthogonal Machine Learning for Demand Estimation: High Dimensional Causal Inference in Dynamic Panels. ArXiv e-prints, December 2017.
  2. V. Chernozhukov, D. Nekipelov, V. Semenova, and V. Syrgkanis. Two-Stage Estimation with a High-Dimensional Second Stage. 2018.
  3. Microsoft 因果推理开源代码 EconML
  4. Double Machine Learning 开源代码 MLInference
  5. https://www.linkedin.com/pulse/double-machine-learning-approximately-unbiased-jonas-vetterle/
  6. https://www.zhihu.com/question/41312883

Paper慢慢读 - AB实验人群定向 Double Machine Learning的更多相关文章

  1. Paper慢慢读 - AB实验人群定向 Recursive Partitioning for Heterogeneous Casual Effects

    这篇是treatment effect估计相关的论文系列第一篇所以会啰嗦一点多给出点背景. 论文 Athey, S., and Imbens, G. 2016. Recursive partition ...

  2. Paper慢慢读 - AB实验人群定向 Learning Triggers for Heterogeneous Treatment Effects

    这篇论文是在 Recursive Partitioning for Heterogeneous Casual Effects 的基础上加入了两个新元素: Trigger:对不同群体的treatment ...

  3. AB实验人群定向HTE模型5 - Meta Learner

    Meta Learner和之前介绍的Casual Tree直接估计模型不同,属于间接估计模型的一种.它并不直接对treatment effect进行建模,而是通过对response effect(ta ...

  4. AB实验的高端玩法系列4- 实验渗透低?用户未被触达?CACE/LATE

    CACE全称Compiler Average Casual Effect或者Local Average Treatment Effect.在观测数据中的应用需要和Instrument Variable ...

  5. AB实验的高端玩法系列2 - 更敏感的AB实验, CUPED!

    背景 AB实验可谓是互联网公司进行产品迭代增加用户粘性的大杀器.但人们对AB实验的应用往往只停留在开实验算P值,然后let it go...let it go ... 让我们把AB实验的结果简单的拆解 ...

  6. AB实验的高端玩法系列3 - AB组不随机?观测试验?Propensity Score

    背景 都说随机是AB实验的核心,为什么随机这么重要呢?有人说因为随机所以AB组整体不存在差异,这样才能准确估计实验效果(ATE) \[ ATE = E(Y_t(1) - Y_c(0)) \] 那究竟随 ...

  7. 滴滴数据驱动利器:AB实验之分组提效

    桔妹导读:在各大互联网公司都提倡数据驱动的今天,AB实验是我们进行决策分析的一个重要利器.一次实验过程会包含多个环节,今天主要给大家分享滴滴实验平台在分组环节推出的一种提升分组均匀性的新方法.本文首先 ...

  8. 为什么在数据驱动的路上,AB 实验值得信赖?

    在线AB实验成为当今互联网公司中必不可少的数据驱动的工具,很多公司把自己的应用来做一次AB实验作为数据驱动的试金石. 文 | 松宝 来自 字节跳动数据平台团队增长平台 在线AB实验成为当今互联网公司中 ...

  9. Machine Learning 方向读博的一些重要期刊及会议 && 读博第一次组会时博导的交代

    读博从报道那天算起到现在已经3个多月了,这段时间以来和博导总共见过两次面,寥寥数语的见面要我对剩下的几年读书生活没有了太多的期盼,有些事情一直想去做却总是打不起来精神,最后挣扎一下还是决定把和博导开学 ...

随机推荐

  1. DEVOPS技术实践_05:sonar静态代码扫描

    一.SonarQube静态代码扫描平台 1.1 安装 https://www.sonarqube.org/官网 1.2 下载软件包 https://www.sonarqube.org/download ...

  2. python之面向对象中的多态

    直接看代码: class Dog: def __init__(self,name): self.name = name def play(self): print("%s在汪汪汪" ...

  3. 洛谷$P4177\ [CEOI2008]\ order$ 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 开始看感$jio$长得好像和太空飞行计划差不多的,,,然后仔细康康发现还有租操作,,, 按一般的套路碰到这样儿的一般就先按非特殊化的建图然后考虑怎么实现这个 ...

  4. 低秩稀疏矩阵恢复|ADM(IALM)算法

    一曲新词酒一杯,去年天气旧亭台.夕阳西下几时回? 无可奈何花落去,似曾相识燕归来.小园香径独徘徊. ---<浣溪沙·一曲新词酒一杯>--晏殊 更多精彩内容请关注微信公众号 "优化 ...

  5. 使用wireshark 对flutter 框架APP进行抓包

    引言 最近公司开发一个APP,由于原生人力不足,直接由前端使用flutter 开发的,而使用flutter框架开发的客户端 fiddler无法抓到包,所以我采用wireshark从路由层面抓包 fid ...

  6. Java标签学习

    今天早上看Java编程思想第四章控制执行流程,本来很简单的一些东西,但是突然看到了goto发现自己以前还真的没怎么用过,不过Java中对goto作为保留关键字,而是提供了一个叫标签的东西,我们一起来看 ...

  7. 求1-n 中与 m 互质的素因子 (容斥原理)

    ll prime[100]; ll cnt; void getprime(){ cnt = 0; ll num = m; for(ll i = 2; i*i <= m; i++){ // sqr ...

  8. 2018徐州现场赛A

    题目链接:http://codeforces.com/gym/102012/problem/A 题目给出的算法跑出的数据是真的水 #include<iostream> #include&l ...

  9. 一文带你看清HTTP所有概念

    上一篇文章我们大致讲解了一下 HTTP 的基本特征和使用,大家反响很不错,那么本篇文章我们就来深究一下 HTTP 的特性.我们接着上篇文章没有说完的 HTTP 标头继续来介绍(此篇文章会介绍所有标头的 ...

  10. selenium chrome headless无界面引擎

    注意:PhantomJS已被舍弃 chrome headless 在打开浏览器之前添加参数 import time import sys from selenium import webdriver ...