2450. 距离

★★   输入文件:distance.in   输出文件:distance.out   简单对比
时间限制:1 s   内存限制:256 MB

【题目描述】

在一个村子里有N个房子,一些双向的路连接着他们。人们总喜欢问这个“如果1想从房子A走到房子B有多远?”这个通常很难回答。但幸运的是在这个村里答案总是唯一的,自从道路修建以来这只有唯一的一条路(意思是你不能去一个地方两次)在每两座房子之间。你的工作是回答所有好奇的人。

【输入格式】

输入文件第一行有两个数n(2≤n≤10000)和m(1≤m≤20000),即房子数和问题数。后面n-1行每行由3个数构成i,j,k,由空格隔开,意思是房子i和房子j之间距离为k(0<k≤100)。房子以1到n标记。

下面m行每行有两个不同的整数i和j,你需要回答房子i和房子j之间的距离。

【输出格式】

输出有n行。每行表示个一个问题的答案。

【样例1】

输入样例1:
3 2
1 2 10
3 1 15
1 2
2 3
输出样例1:
10
25

【样例2】

输入样例2:
2 2
1 2 100
1 2
2 1
输出样例2:
100
100

【提示】

在此键入。

【来源】

在此键入。

本人决定:认真细致地讲一下树链剖分求LCA  以及快速地求树上两点的距离的方法

首先来讲解一下树链剖分的模板

1.首先要读入边 建边

根据具体的题目来决定是要建单向边还是双向边

2.两个dfs来进行树链剖分的预处理

3.写一下lca函数

4.询问+输出答案

这是一个非常巧妙的处理

可以从上面的这一个图看出x到Root的距离 - lca到Root的距离  =  x到lca的距离

y到Root的距离   -   lca到Root的距离  =  y到lca的距离

两式合并得dis[x]  -  dis[lca]   +dis[y]  -  dis[lca]   =   x到y的距离

    得出公式 dis[x]+dis[y]-2*dis[lca(x,y)]  =  x到y的距离

#include<bits/stdc++.h>
#define maxn 10005
using namespace std;
int n,q;
vector<int> v[maxn],w[maxn];
int size[maxn],dfn[maxn],pos[maxn],vis[maxn],fa[maxn],son[maxn],top[maxn],dep[maxn];
int cnt=;
int dis[maxn];
void Dfs(int x)
{
size[x]=;//首先以x为根的子树的大小size 先设为1 就是目前已x为根的子树只有x自己
for(int i=;i<v[x].size();i++)
{
int y=v[x][i];//son
if(!size[y])//这里的意思其实就是如果这个儿子还没有访问过
//因为我们可以看到每一次dfs的开始才会把size设一个数值 一开始应该都是0的
//所以这里就可以直接当做一个vis标记用了
{
dep[y]=dep[x]+;//记录深度 son的深度 是father的深度+1
fa[y]=x;//记录son的father 是谁
dis[y]=dis[x]+w[x][i];//dis数组是存储每一个节点到根(1)的距离
//son到根的距离就是father 到根的距离加上father和son之间的距离
Dfs(y);
size[x]+=size[y];//更新x为根的子树的大小
if(size[son[x]]<size[y])//son存储的是重儿子
son[x]=y;//更新重儿子
}
}
}
void Dfs(int x,int tp)
{
top[x]=tp;//top数组是用来记录一条重链的顶端
dfn[++cnt]=x;//dfn是记录第cnt个访问的点是x
pos[x]=cnt;//pos记录第x个点是第cnt个访问的 当然在本题中不会用到
if(son[x])//如果有重儿子 先走重儿子
Dfs(son[x],tp);
for(int i=;i<v[x].size();i++)
{
int y=v[x][i];
if(!top[y])//走轻儿子
Dfs(y,y);
}
}
int lca(int x,int y)
{
while(top[x]!=top[y])//先跳到同一条重链上
{
if(dep[top[x]]<dep[top[y]])
swap(x,y);
x=fa[top[x]];
}
if(dep[x]>dep[y])//保证x的深度更小 x就是lca
swap(x,y);
return x;
}
int main()
{
freopen("distance.in","r",stdin);
freopen("distance.out","w",stdout);
scanf("%d%d",&n,&q);
for(int i=;i<n;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
v[x].push_back(y);
w[x].push_back(z);
v[y].push_back(x);
w[y].push_back(z);
}
Dfs();Dfs(,);
while(q--)
{
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",dis[x]+dis[y]-dis[lca(x,y)]*);
}
return ;
}

cogs 2450. 距离 树链剖分求LCA最近公共祖先 快速求树上两点距离 详细讲解 带注释!的更多相关文章

  1. Luogu 2680 NOIP 2015 运输计划(树链剖分,LCA,树状数组,树的重心,二分,差分)

    Luogu 2680 NOIP 2015 运输计划(树链剖分,LCA,树状数组,树的重心,二分,差分) Description L 国有 n 个星球,还有 n-1 条双向航道,每条航道建立在两个星球之 ...

  2. Luogu 2590 [ZJOI2008]树的统计 / HYSBZ 1036 [ZJOI2008]树的统计Count (树链剖分,LCA,线段树)

    Luogu 2590 [ZJOI2008]树的统计 / HYSBZ 1036 [ZJOI2008]树的统计Count (树链剖分,LCA,线段树) Description 一棵树上有n个节点,编号分别 ...

  3. BZOJ 2243: [SDOI2011]染色 树链剖分 倍增lca 线段树

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  4. 求LCA最近公共祖先的在线ST算法_C++

    ST算法是求最近公共祖先的一种 在线 算法,基于RMQ算法,本代码用双链树存树 预处理的时间复杂度是 O(nlog2n)   查询时间是 O(1) 的 另附上离线算法 Tarjan 的链接: http ...

  5. 求LCA最近公共祖先的在线倍增算法模板_C++

    倍增求 LCA 是在线的,而且比 ST 好写多了,理解起来比 ST 和 Tarjan 都容易,于是就自行脑补吧,代码写得容易看懂 关键理解 f[i][j] 表示 i 号节点的第 2j 个父亲,也就是往 ...

  6. 求LCA最近公共祖先的离线Tarjan算法_C++

    这个Tarjan算法是求LCA的算法,不是那个强连通图的 它是 离线 算法,时间复杂度是 O(m+n),m 是询问数,n 是节点数 它的优点是比在线算法好写很多 不过有些题目是强制在线的,此类离线算法 ...

  7. loj#6073. 「2017 山东一轮集训 Day5」距离(树链剖分 主席树)

    题意 题目链接 Sol 首先对询问差分一下,我们就只需要统计\(u, v, lca(u, v), fa[lca(u, v)]\)到根的路径的贡献. 再把每个点与\(k\)的lca的距离差分一下,则只需 ...

  8. JZYZOJ1454 NOIP2015 D2T3_运输计划 二分 差分数组 lca tarjan 树链剖分

    http://172.20.6.3/Problem_Show.asp?id=1454 从这道题我充分认识到我的脑子里好多水orz. 如果知道了这个要用二分和差分写,就没什么思考上的难点了(屁咧你写了一 ...

  9. 【NOI复习】树链剖分

    简介 树链剖分通常用来解决一类维护静态树上路径信息的问题, 例如:给定一棵点带权树, 接下来每次操作会修改某条路径上所有点的权值(修改为同一个值或是同加上一个值等) , 以及询问某条路径上所有点的权值 ...

随机推荐

  1. 详解PhpStudy集成环境升级MySQL数据库版本

    http://phpstudy.php.cn/jishu-php-2967.html phpstudy里没有地方可以设置mysql数据库,很多人都疑惑在phpstudy里怎么升级mysql数据库版本, ...

  2. web.xml和@WebServlet

    web.xml <servlet> <servlet-name>DZDYServlet</servlet-name> <servlet-class>包名 ...

  3. 2018-2-13-wpf-使用-Dispatcher.Invoke-冻结窗口

    title author date CreateTime categories wpf 使用 Dispatcher.Invoke 冻结窗口 lindexi 2018-2-13 17:23:3 +080 ...

  4. element-ui tree 根据不同叶子节点设置是否显示复选框

    公司业务要求不同根节点配置显示与否复选框,官方文档没有这样的配置,所以想到了修改element-ui源码. 1.这里将“node_modules\element-ui\packages”下的tree文 ...

  5. springdata jpa使用Example快速实现动态查询

    Example官方介绍 Query by Example (QBE) is a user-friendly querying technique with a simple interface. It ...

  6. H3C FTP被动数据传输方式

  7. tomcat下的work目录和temp目录

    1. tomcat下的work目录 1    用tomcat作web服务器的时候,部署的程序在webApps下,这些程序都是编译后的程序(发布到tomcat的项目里含的类,会被编译成.class后才发 ...

  8. 【58.33%】【codeforces 747B】Mammoth's Genome Decoding

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  9. addEventListener() 方法,事件监听(去哪儿网用到过)

    addEventListener() 方法,事件监听 你可以使用 removeEventListener() 方法来移除事件的监听. 语法 element.addEventListener(event ...

  10. 2019-3-1-C#-double-好用的扩展

    title author date CreateTime categories C# double 好用的扩展 lindexi 2019-3-1 9:19:5 +0800 2018-05-15 10: ...