9.3.2 map端连接-CompositeInputFormat连接类
1.1.1 map端连接-CompositeInputFormat连接类
(1)使用CompositeInputFormat连接类需要满足三个条件:
1)两个数据集都是大的数据集,不能用缓存文件的方式。
2)数据集都是按照相同的键进行排序;
3)数据集有相同的分区数,同一个键的所有记录在同一个分区中,输出文件不可分割;
要满足这三个条件,输入数据在达到map端连接函数之前,两个数据集被reduce处理,reduce任务数量相同都为n,两个数据集被分区输出到n个文件,同一个键的所有记录在同一个分区中,且数据集中的数据都是按照连接键进行排序的。reduce数量相同、键相同且都是按键排序、输出文件是不可切分的(小于一个HDFS块,或通过gzip压缩实现),则就满足map端连接的前提条件。利用org.apach.hadoop.mapreduce.join包中的CompositeInputFormat类来运行一个map端连接。
(2)CompositeInputFormat类简介
CompositeInputFormat类的作用就将job的输入格式设置为job.setInputFormatClass(CompositeInputFormat.class);同时通过conf的set(String name, String value)方法设置两个数据集的连接表达式,表达式内容包括三个要素:连接方式(inner、outer、override、tbl等) ,读取两个数据集的输入方式,两个数据集的路径。这三个要素按照一定的格式组织成字符串作为表达式设置到conf中。
//设置输入格式为 CompositeInputFormat
job.setInputFormatClass(CompositeInputFormat.class);
//conf设置连接的表达式public static final String JOIN_EXPR = "mapreduce.join.expr";
Configuration conf = job.getConfiguration();
conf.set(CompositeInputFormat.JOIN_EXPR, CompositeInputFormat.compose(
"inner", KeyValueTextInputFormat.class,
FileInputFormat.getInputPaths(job)));
//等价转换之后就是如下表达式
//conf.set("mapreduce.join.expr", CompositeInputFormat.compose(
// "inner", KeyValueTextInputFormat.class, userPath,commentPath));
CompositeInputFormat类的源码如下
//
// Source code recreated from a .class file by IntelliJ IDEA
// (powered by Fernflower decompiler)
// package org.apache.hadoop.mapreduce.lib.join; import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.Map.Entry;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import org.apache.hadoop.classification.InterfaceAudience.Public;
import org.apache.hadoop.classification.InterfaceStability.Stable;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapreduce.InputFormat;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.join.Parser.CNode;
import org.apache.hadoop.mapreduce.lib.join.Parser.Node;
import org.apache.hadoop.mapreduce.lib.join.Parser.WNode; @Public
@Stable
public class CompositeInputFormat<K extends WritableComparable> extends InputFormat<K, TupleWritable> {
public static final String JOIN_EXPR = "mapreduce.join.expr";
public static final String JOIN_COMPARATOR = "mapreduce.join.keycomparator";
private Node root; public CompositeInputFormat() {
} public void setFormat(Configuration conf) throws IOException {
this.addDefaults();
this.addUserIdentifiers(conf);
this.root = Parser.parse(conf.get("mapreduce.join.expr", (String)null), conf);
} protected void addDefaults() {
try {//有默认的四种连接方式,每种连接方式都有对应的Reader
CNode.addIdentifier("inner", InnerJoinRecordReader.class);
CNode.addIdentifier("outer", OuterJoinRecordReader.class);
CNode.addIdentifier("override", OverrideRecordReader.class);
WNode.addIdentifier("tbl", WrappedRecordReader.class);
} catch (NoSuchMethodException var2) {
throw new RuntimeException("FATAL: Failed to init defaults", var2);
}
} private void addUserIdentifiers(Configuration conf) throws IOException {
Pattern x = Pattern.compile("^mapreduce\\.join\\.define\\.(\\w+)$");
Iterator i$ = conf.iterator(); while(i$.hasNext()) {
Entry<String, String> kv = (Entry)i$.next();
Matcher m = x.matcher((CharSequence)kv.getKey());
if (m.matches()) {
try {
CNode.addIdentifier(m.group(1), conf.getClass(m.group(0), (Class)null, ComposableRecordReader.class));
} catch (NoSuchMethodException var7) {
throw new IOException("Invalid define for " + m.group(1), var7);
}
}
} } public List<InputSplit> getSplits(JobContext job) throws IOException, InterruptedException {
this.setFormat(job.getConfiguration());
job.getConfiguration().setLong("mapreduce.input.fileinputformat.split.minsize", 9223372036854775807L);
return this.root.getSplits(job);
} public RecordReader<K, TupleWritable> createRecordReader(InputSplit split, TaskAttemptContext taskContext) throws IOException, InterruptedException {
this.setFormat(taskContext.getConfiguration());
return this.root.createRecordReader(split, taskContext);
}
//按格式组织连接表达式
public static String compose(Class<? extends InputFormat> inf, String path) {
return compose(inf.getName().intern(), path, new StringBuffer()).toString();
}
//连接方式(inner、outer、override、tbl等) 、读取两个数据集的输入方式、两个数据集的路径
public static String compose(String op, Class<? extends InputFormat> inf, String... path) {
String infname = inf.getName();//org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat
StringBuffer ret = new StringBuffer(op + '(');
String[] arr$ = path;
int len$ = path.length; for(int i$ = 0; i$ < len$; ++i$) {
String p = arr$[i$];
compose(infname, p, ret);
ret.append(',');
} ret.setCharAt(ret.length() - 1, ')');
return ret.toString();
} public static String compose(String op, Class<? extends InputFormat> inf, Path... path) {
ArrayList<String> tmp = new ArrayList(path.length);
Path[] arr$ = path;
int len$ = path.length; for(int i$ = 0; i$ < len$; ++i$) {
Path p = arr$[i$];
tmp.add(p.toString());
} return compose(op, inf, (String[])tmp.toArray(new String[0]));
} private static StringBuffer compose(String inf, String path, StringBuffer sb) {
sb.append("tbl(" + inf + ",\"");
sb.append(path);
sb.append("\")");
return sb;
}
}
其中主要的函数就是compose函数,他是一个重载函数:
public static String compose(String op, Class<? extends InputFormat> inf, String... path);
op表示连接类型(inner、outer、override、tbl),inf表示数据集的输入方式,path表示输入数据集的文件路径。这个函数的作用是将传入的表达式三要素:连接方式(inner、outer、override、tbl等) 、读取两个数据集的输入方式、两个数据集的路径组成字符串。假设conf按如下方式传入三要素:
conf.set("mapreduce.join.expr", CompositeInputFormat.compose(
"inner", KeyValueTextInputFormat.class,“/hdfs/inputpath/userpath”, “/hdfs/inputpath/commentpath”));
compose函数最终得出的表达式为:
inner(tbl(org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat,” /hdfs/inputpath/userpath”),tbl(org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat,” /hdfs/inputpath/ commentpath”))
现在我只能深入到这里,至于为什么要满足三个条件才可以连接?设置表达式之后内部又是如何实现连接?有知道的欢迎留言讨论。
(3)CompositeInputFormat实现map端连接的实例
成绩数据和名字数据通过CompositeInputFormat实现map连接
成绩数据:
1,yuwen,100
1,shuxue,99
2,yuwen,99
2,shuxue,88
3,yuwen,99
3,shuxue,56
4,yuwen,33
4,shuxue,99名字数据:
1,yaoshuya,25
2,yaoxiaohua,29
3,yaoyuanyie,15
4,yaoshupei,26
文件夹定义如下:
代码:
package Temperature; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.FileUtil; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat; import org.apache.hadoop.mapreduce.lib.join.CompositeInputFormat; import org.apache.hadoop.mapreduce.lib.join.TupleWritable; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; import java.io.File; import java.io.IOException; public class CompositeJoin extends Configured implements Tool { private static class CompositeJoinMapper extends Mapper<Text, TupleWritable,Text,TupleWritable> { @Override protected void map(Text key, TupleWritable value, Context context) throws IOException, InterruptedException { context.write(key,value); } } public int run(String[] args) throws Exception { Path userPath = new Path(args[0]); Path commentPath = new Path(args[1]); Path output = new Path(args[2]); Job job=null; try { job = new Job(getConf(), "mapinnerjoin"); } catch (IOException e) { e.printStackTrace(); } job.setJarByClass(getClass()); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(TupleWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(TupleWritable.class); // 设置两个输入数据集的目录 FileInputFormat.addInputPaths(job, args[0]); FileInputFormat.addInputPaths(job, args[1]); //设置输出目录 FileOutputFormat.setOutputPath(job,output); Configuration conf = job.getConfiguration(); //设置输入格式为 CompositeInputFormat job.setInputFormatClass(CompositeInputFormat.class); conf.set("mapreduce.input.keyvaluelinerecordreader.key.value.separator", ","); //conf设置连接的表达式public static final String JOIN_EXPR = "mapreduce.join.expr"; //conf.set(CompositeInputFormat.JOIN_EXPR, CompositeInputFormat.compose( // "inner", KeyValueTextInputFormat.class, // FileInputFormat.getInputPaths(job))); //等价转换之后就是如下表达式 String strExpretion=CompositeInputFormat.compose("inner", KeyValueTextInputFormat.class, userPath,commentPath); conf.set("mapreduce.join.expr",strExpretion ); job.setOutputFormatClass(TextOutputFormat.class); job.setNumReduceTasks(0);//map端连接,reduce为0,不使用reduce job.setMapperClass(CompositeJoinMapper.class); //键值属性分隔符设置为空格 //删除结果目录,重新生成 FileUtil.fullyDelete(new File(args[2])); return job.waitForCompletion(true)?0:1; } public static void main(String[] args) throws Exception { //三个参数,两个连接的数据路径,一个输出路径 int exitCode= ToolRunner.run(new CompositeJoin(),args); System.exit(exitCode); } }
设置run->edit Configuration设置输入输出路径,两个输入,一个输出
运行该类的main函数得到结果
自己开发了一个股票智能分析软件,功能很强大,需要的点击下面的链接获取:
https://www.cnblogs.com/bclshuai/p/11380657.html
9.3.2 map端连接-CompositeInputFormat连接类的更多相关文章
- 使用map端连接结合分布式缓存机制实现Join算法
前面我们介绍了MapReduce中的Join算法,我们提到了可以通过map端连接或reduce端连接实现join算法,在文章中,我们只给出了reduce端连接的例子,下面我们说说使用map端连接结合分 ...
- 9.3.1 map端连接- DistributedCache分布式缓存小数据集
1.1.1 map端连接- DistributedCache分布式缓存小数据集 当一个数据集非常小时,可以将小数据集发送到每个节点,节点缓存到内存中,这个数据集称为边数据.用map函数 ...
- Asp.Net SignalR - 持久连接类
持久连接类 通过SignalR持久连接类可以快速的构建一个即时通讯的应用,上篇博文已经我们创建一个owin Startup类和一个持久连接类来完成我们的工作,然后在Startup类的Configura ...
- ADO.NET基础巩固-----连接类和非连接类
最近的一段时间自己的状态还是不错的,早上,跑步,上自习看书,下午宿舍里面编程实战,晚上要么练习代码,要么去打球(在不打就没机会了),生活还是挺丰富的. 关于C#的基础回顾就先到前面哪里,这 ...
- 深入理解php的MySQL连接类
php的MySQL连接类. 后面几个show_databases和show_tables....等方法都用了一堆echo,好像一直不喜欢在类的方法里直接用输出语句,不过这也只是列举数据库和表名,构造 ...
- List、Map和Set实现类
List.Map和Set实现类 1.List实现类 (1)ArrayList (2)Vector 2.Map实现类 (1)HashMap (2)Hashtable 3.Set实现类 (1)HashSe ...
- PHP mysqli方式连接类
分享一个PHP以mysqli方式连接类完整代码实例,有关mysqli用法实例. 一个在PHP中以mysqli方式连接数据库的一个数据库类实例,该数据库类是从一个PHP的CMS中整理出来的,可实现PHP ...
- C/S模式客户端连接服务器连接不上的问题
C/S模式客户端连接服务器连接不上的问题 1.服务器电脑防火墙关闭 2.服务器端SQL SERVER2008R: 配置工具--SQL SERVER配置管理器 MSSQLSERVER协议.客户端协议(S ...
- [C++学习笔记14]动态创建对象(定义静态方法实现在map查找具体类名对应的创建函数,并返回函数指针,map真是一个万能类)good
[C++学习笔记14]动态创建对象 C#/Java中的反射机制 动态获取类型信息(方法与属性) 动态创建对象 动态调用对象的方法 动态操作对象的属性 前提:需要给每个类添加元数据 动态创建对象 实 ...
随机推荐
- rabbitmq系列(一)初识rabbitmq
为什么要使用消息中间件 案例:假如我们开发了一个商品抢购网站.这个网站的目的就是在某一时间点进行抢购商品,同时要求用户注册,在注册的时候会同时给用户电话和邮箱中发送验证码,以便完成信息注册.传统做法应 ...
- C# 将Word转为PDF、XPS、Epub、RTF(基于Spire.Cloud.Word.SDK)
本文介绍通过调用Spire.Cloud.Word.SDK提供的ConvertApi接口将Word转换为PDF.XPS.Epub.RTF以及将Docx转为Doc格式等.调用接口方法及步骤参考以下步骤: ...
- WIN10升级后输入法无法输入中文
查看是否安装了中文输入法,可能在升级后用户文件出现问题. 在设置>语言.添加一下中文输入法.
- ORM跨表查询总结
一.基于对象的查询-->子查询 1.一对多 正向查询:基于 字段 反向查询:基于 表名__set.all() 注意:表名全部小写 2.多对多 正向查询:基于 字段.all() 反向查询:基于 表 ...
- SqlServer分页存储过程(多表查询,多条件排序),Repeater控件呈现数据以及分页
存储过程(Stored Procedure)是在大型数据库系统中,一组为了完成特定功能的SQL 语句集,存储在数据库中,经过第一次编译后再次调用不需要再次编译,用户通过指定存储过程的名字并给出 ...
- Java入门 - 高级教程 - 07.多线程
原文地址:http://www.work100.net/training/java-multi-threading.html 更多教程:光束云 - 免费课程 多线程 序号 文内章节 视频 1 概述 2 ...
- JVM内存布局及GC知识
一.JVM运行时内存布局 按java 8虚拟机规范的原始表达:(jvm)Run-Time Data Areas, 暂时翻译为"jvm运行时内存布局". 从概念上大致分为6个(逻辑) ...
- Frameworks.Entity.Core 1
CommonEnums 1系统模块BlockType 2证件类型IDType 3在线支付类型OnLineType 4操作权限,支持位移运算OperatorAuthority 5订单状态: 1000-待 ...
- xsd 和 wsdl
xsd : 可用方便 不同的语言之间的 用命令行来 转换对应语言的. wsdl: 可用方便不同语言的类描述 用命令行 来相互转换. 类似 thift me ?
- HanLP《自然语言处理入门》笔记--3.二元语法与中文分词
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 3. 二元语法与中文分词 上一章中我们实现了块儿不准的词典分词,词典分词无法消歧. ...