Codeforces 1248C Ivan the Fool and the Probability Theory(推公式)
题意
一个n*m的网格图,每个格子可以染黑色、白色,问你每个格子最多有一个相邻颜色相同的方案数
n,m<=1e5
思路
我们先处理\(1 \times m\)的情况
设\(f[i][j]\)为前\(i\)个格子,最后一个为\(j\)的方案数
可以得到递推式\(f[i][j]=f[i-1][j\bigoplus 1]+f[i-2][j\bigoplus 1]\)
那么\(1\times m\)的答案为\(f[m][0]+f[m][1]\)
引理
这题中的合法的染色图相邻两行要么完全相同,要么完全相反
证明:
假设第\(i\)行和第\(i+1\)行部分相同,部分相反,设白色是\(0\),黑色是\(1\)
那么就存在一个位置\(j\),使得\(a[i+1][j]=a[i][j],a[i+1][j+1]!=a[i][j+1]\)(先不等后相等一样)
因为这四个方格可选的颜色只有两个,所以在\(a[i+1][j+1]\)和\(a[i][j+1]\)中一定有一个和\(a[i+1][j]\)与\(a[i][j+1]\)相同
也就是说,这四个方格中出现了三个一样的颜色,无论怎么组合都不满足题意,
所以不存在部分相同部分相反,引理得证
有了以上结论,我们可以可以找"什么时候完全相同,什么时候完全相反"了
可以发现,当一行里存在连续两个连续一样的颜色的时候,下一行一定与该行相反
也就是说,如果确定了第一行,里面有两个连续一样的颜色,对答案的贡献为1
第一行的这种情况方案数为\(f[m][0]+f[m][1]-2\)
而排除的这两种,就是第一行为\(10101010..\)和\(01010101..\)两种方案
由于引理的存在,我们可以知道,当每一行的第一个元素确定的时候,我们就确定了这行跟上一行完全相同还是相反
所以这种情况的贡献就是第一列的合法方案数,即\(f[n][0]+f[n][1]\)
终上所述,答案为\(f[m][0]+f[m][1]+f[n][0]+f[n][1]-2\)
代码
ll n,m;
ll f[maxn][3];
ll F[maxn];
int main(){
scanf("%lld %lld", &n, &m);
f[1][0]=f[1][1]=1;
f[2][0]=f[2][1]=2;
F[1]=2;F[2]=4;
for(int i = 3; i <= max(n,m); i++){
f[i][1]=(f[i-1][0]+f[i-2][0])%mod;
f[i][0]=(f[i-1][1]+f[i-2][1])%mod;
F[i]=(f[i][0]+f[i][1])%mod;
}
printf("%lld",(F[n]+F[m]-2+mod)%mod);
return 0;
}
Codeforces 1248C Ivan the Fool and the Probability Theory(推公式)的更多相关文章
- Codeforces 1239A. Ivan the Fool and the Probability Theory
传送门 注意到连续两个格子如果有相同颜色那么一路过去的都可以确定 比如一开始染了这两个位置: 然后发现后面整片过去都可以确定: 对于横着的情况也是一样,然后就会发现不可能出现横着两个和竖着两个同时都有 ...
- Codeforces Round #594 (Div. 1) A. Ivan the Fool and the Probability Theory 动态规划
A. Ivan the Fool and the Probability Theory Recently Ivan the Fool decided to become smarter and stu ...
- Codeforces Round #594 (Div. 2) - C. Ivan the Fool and the Probability Theory(思维)
题意:给n*m的网格涂黑白两种颜色,保证每个格子上下左右的四个格子中最多只有一个格子与自己颜色相同,问有多少种涂法?结果$mod1000000007$ 思路:先只考虑一行有多少种涂法 $dp[i][0 ...
- Codeforces Round #594 (Div. 1) Ivan the Fool and the Probability Theory
题意:给你一个NxM的图,让你求有多少符合 “一个格子最多只有一个同颜色邻居”的图? 题解:首先我们可以分析一维,很容易就可以知道这是一个斐波那契计数 因为dp[1][m]可以是dp[1][m-1]添 ...
- Codeforces Round #594 (Div. 2) C. Ivan the Fool and the Probability Theory (思维,递推)
题意:给你一个\(n\)x\(m\)的矩阵,需要在这些矩阵中涂色,每个格子可以涂成黑色或者白色,一个格子四周最多只能有\(2\)个和它颜色相同的,问最多有多少种涂色方案. 题解:首先我们考虑一维的情况 ...
- CF1239A Ivan the Fool and the Probability Theory
思路: 可以转化为“strip”(http://tech-queries.blogspot.com/2011/07/fit-12-dominos-in-2n-strip.html)问题.参考了http ...
- CF C.Ivan the Fool and the Probability Theory【思维·构造】
题目传送门 题目大意: 一个$n*m$的网格图,每个格子可以染黑色.白色,问每个格子最多有一个相邻格子颜色相同的涂色方案数$n,m<=1e5$ 分析: 首先,考虑到如果有两个相邻的格子颜色相同, ...
- C - Ivan the Fool and the Probability Theory---div2
题目连接:https://codeforces.com/contest/1248/problem/C 思路: 注意上下两排的关系,如果说上面那一排有两个方格连续,那么他相邻的两排必定和他相反,如果说当 ...
- Codeforces Round #133 (Div. 2), A.【据图推公式】 B.【思维+简单dfs】
Problem - 216A - Codeforces Problem - B - Codeforces A Tiling with Hexagons 题意: 给出a b c ,求里面有多少个六边形 ...
随机推荐
- [ASP.NET Core 3框架揭秘] Options[1]: 配置选项的正确使用方式[上篇]
依赖注入不仅是支撑整个ASP.NET Core框架的基石,也是开发ASP.NET Core应用采用的基本编程模式,所以依赖注入十分重要.依赖注入使我们可以将依赖的功能定义成服务,最终以一种松耦合的形式 ...
- Idea 注册方式,亲测可用
参考:https://www.cnblogs.com/aacoutlook/p/9036299.html 2018年3月 <License server>方式不能使用了,只好尝试<A ...
- C#中的结构体和对象区别
经常听到有朋友在讨论C#中的结构与类有什么区别.正好这几日闲来无事,自己总结一下,希望大家指点. 1. 首先是语法定义上的区别啦,这个就不用多说了.定义类使用关键字class 定义结构使用关键字str ...
- Scala与Mongodb实践1-----mongodbCRUD
目的:如何使用MongoDB之前提供有关Scala驱动程序及其异步API. 1.现有条件 IDEA中的:Scala+sbt+SDK mongodb-scala-driver的网址:http://mon ...
- 从头学pytorch(十九):批量归一化batch normalization
批量归一化 论文地址:https://arxiv.org/abs/1502.03167 批量归一化基本上是现在模型的标配了. 说实在的,到今天我也没搞明白batch normalize能够使得模型训练 ...
- 【智能合约】编写复杂业务场景下的智能合约——可升级的智能合约设计模式(附Demo)
智能合约的现状 以太坊在区块链上实现了智能合约的概念,用于:同质化通证发行(ERC-20).众筹.投票.存证取证等等,共同点是:合约逻辑简单,只是业务流程中的关键节点,而非整个业务流程.而智能合约想解 ...
- pyton 封装
定义:在类中将方法和属性隐藏起来 一.私有化 1.格式 __名字,在名字前加双下划线 2.私有化对象 对象属性 静态属性 普通方法 3.作用 1)在类的外面不能直接调用类的方法和属性 2)类的属性值不 ...
- spring Cloud-eureka的保护模式
eureka的首页出现以下警告 EMERGENCY! EUREKA MAY BE INCORRECTLY CLAIMING INSTANCES ARE UP WHEN THEY'RE NOT. REN ...
- 《大道至简》第一章Java伪代码读后感
/*写程序,实际是一种方法论.从另外一个角度帮我们看待世界,看清事物的本质. 早在两千年前的寓言中,愚公和智叟的问答中就已体现整个工程的实现程序.*/ public class 移山{ string ...
- Java基础语法和基本数据类型
Java基础语法 一个Java程序可以认为是一系列对象的集合,而这些对象通过调用彼此的方法来协同工作. 对象:对象是类的一个实例,有状态(属性)和行为(方法). 类:类是一个模板,他描述一类对象的行为 ...