roc.m
function [tpr,fpr,thresholds] = roc(targets,outputs)
%ROC Receiver operating characteristic.
%
% The receiver operating characteristic is a metric used to check
% the quality of classifiers. For each class of a classifier,
% threshold values across the interval [0,1] are applied to
% outputs. For each threshold, two values are calculated, the
% True Positive Ratio (the number of outputs greater or equal
% to the threshold, divided by the number of one targets),
% and the False Positive Ratio (the number of outputs greater
% then the threshold, divided by the number of zero targets).
%
% For single class problems, [TPR,FPR,TH] = <a href="matlab:doc roc">roc</a>(T,Y) takes
% a 1xQ target matrix T, where each element is either 1 or 0 indicating
% class membership or non-menbership respectively, and 1xQ outputs Y of
% values in the range [0,1].
%
% It returns three 1xQ vectors: the true-positive/positive ratios TPR,
% the false-positive/negative ratios FPR, and the thresholds associated
% with each of those values TH.
%
% For multi-class problems [TPR,FPR,TH] = <a href="matlab:doc roc">roc</a>(T,Y) takes
% an SxQ target matrix T, where each column contains a single 1 value,
% with all other elements 0. The row index of each 1 indicates which of S
% categories that vector represents. It also takes an SxQ output matrix Y,
% with values in the range [0,1]. The row indices of the largest elements in
% each column of Y indicate the most likely class.
%
% In the multi-class case, all three values returned are 1xS cell arrays,
% so that TPR{i}, FPR{i} and TH{i} are the ratios and thresholds for the
% ith class.
%
% <a href="matlab:doc roc">roc</a>(T,Y) can also take a boolean row vector T, and row vector Y, in
% which case two categories are represented by targets 1 and 0.
%
% Here a network is trained to recognize iris flowers the ROC is
% calculated and plotted.
%
% [x,t] = <a href="matlab:doc iris_dataset">iris_dataset</a>;
% net = <a href="matlab:doc patternnet">patternnet</a>(10);
% net = <a href="matlab:doc train">train</a>(net,x,t);
% y = net(x);
% [tpr,fpr,th] = <a href="matlab:doc roc">roc</a>(t,y)
% <a href="matlab:doc plotroc">plotroc</a>(t,y)
%
% See also PLOTROC, CONFUSION % Copyright 2007-2011 The MathWorks, Inc. nnassert.minargs(nargin,2);
targets = nntype.data('format',targets,'Targets');
outputs = nntype.data('format',outputs,'Outputs');
% TOTO - nnassert_samesize({targets,outputs},{'Targets','Outputs'});
if size(targets,1) > 1
warning(message('nnet:roc:Arguments'));
end
targets = [targets{1,:}];
outputs = [outputs{1,:}];
numClasses = size(targets,1); known = find(~isnan(sum(targets,1)));
targets = targets(:,known);
outputs = outputs(:,known); if (numClasses == 1)
targets = [targets; 1-targets];
outputs = [outputs; 1-outputs-eps*(outputs==0.5)];
[tpr,fpr,thresholds] = roc(targets,outputs);
tpr = tpr{1};
fpr = fpr{1};
thresholds = thresholds{1};
return;
end fpr = cell(1,numClasses);
tpr = cell(1,numClasses);
thresholds = cell(1,numClasses); for i=1:numClasses
[tpr{i},fpr{i},thresholds{i}] = roc_one(targets(i,:),outputs(i,:));
end %%
function [tpr,fpr,thresholds] = roc_one(targets,outputs) numSamples = length(targets);
numPositiveTargets = sum(targets);
numNegativeTargets = numSamples-numPositiveTargets; thresholds = unique([0 outputs 1]);
numThresholds = length(thresholds); sortedPosTargetOutputs = sort(outputs(targets == 1));
numPosTargetOutputs = length(sortedPosTargetOutputs);
sortedNegTargetOutputs = sort(outputs(targets == 0));
numNegTargetOutputs = length(sortedNegTargetOutputs); fpcount = zeros(1,numThresholds);
tpcount = zeros(1,numThresholds); posInd = 1;
negInd = 1;
for i=1:numThresholds
threshold = thresholds(i);
while (posInd <= numPosTargetOutputs) && (sortedPosTargetOutputs(posInd) <= threshold)
posInd = posInd + 1;
end
tpcount(i) = numPosTargetOutputs + 1 - posInd;
while (negInd <= numNegTargetOutputs) && (sortedNegTargetOutputs(negInd) <= threshold)
negInd = negInd + 1;
end
fpcount(i) = numNegTargetOutputs + 1 - negInd;
end tpr = fliplr(tpcount) ./ max(1,numPositiveTargets);
fpr = fliplr(fpcount) ./ max(1,numNegativeTargets);
thresholds = fliplr(thresholds);
roc.m的更多相关文章
- ROC曲线、PR曲线
在论文的结果分析中,ROC和PR曲线是经常用到的两个有力的展示图. 1.ROC曲线 ROC曲线(receiver operating characteristic)是一种对于灵敏度进行描述的功能图像. ...
- ROC & AUC笔记
易懂:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ 分析全面但难懂:http://mlwiki.org/index.php/ROC_ ...
- 精确率与召回率,RoC曲线与PR曲线
在机器学习的算法评估中,尤其是分类算法评估中,我们经常听到精确率(precision)与召回率(recall),RoC曲线与PR曲线这些概念,那这些概念到底有什么用处呢? 首先,我们需要搞清楚几个拗口 ...
- 【数据挖掘】朴素贝叶斯算法计算ROC曲线的面积
题记: 近来关于数据挖掘学习过程中,学习到朴素贝叶斯运算ROC曲线.也是本节实验课题,roc曲线的计算原理以及如果统计TP.FP.TN.FN.TPR.FPR.ROC面积等等.往往运用 ...
- PR曲线,ROC曲线,AUC指标等,Accuracy vs Precision
作为机器学习重要的评价指标,标题中的三个内容,在下面读书笔记里面都有讲: http://www.cnblogs.com/charlesblc/p/6188562.html 但是讲的不细,不太懂.今天又 ...
- 如何利用Matlab进行ROC分析
ROC曲线基本知识: 判断分类器的工作效率需要使用召回率和准确率两个变量. 召回率:Recall,又称"查全率", 准确率:Precision,又称"精度".& ...
- 机器学习之分类器性能指标之ROC曲线、AUC值
分类器性能指标之ROC曲线.AUC值 一 roc曲线 1.roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性 ...
- [zz] ROC曲线
wiki https://zh.wikipedia.org/wiki/ROC%E6%9B%B2%E7%BA%BF 在信号检测理论中,接收者操作特征曲线(receiver operating chara ...
- ROC曲线、AUC、Precision、Recall、F-measure理解及Python实现
本文首先从整体上介绍ROC曲线.AUC.Precision.Recall以及F-measure,然后介绍上述这些评价指标的有趣特性,最后给出ROC曲线的一个Python实现示例. 一.ROC曲线.AU ...
- ROC曲线与AUC值
本文根据以下文章整理而成,链接: (1)http://blog.csdn.net/ice110956/article/details/20288239 (2)http://blog.csdn.net/ ...
随机推荐
- SpringBoot 02_返回json数据
在SpringBoot 01_HelloWorld的基础上来返回json的数据,现在前后端分离的情况下多数都是通过Json来进行交互,下面就来利用SpringBoot返回Json格式的数据. 1:新建 ...
- python学习笔记4.1_检测和过滤异常值
1.查看数据分布data.describe() 2.找出某列中符合筛选条件的值 3.找出符合筛选条件的行 4.用np.sign(data)*3设置绝对值的标准 data[np.abs(data)> ...
- ps命令详解-转
名称:ps使用权限:所有使用者使用方式:ps [options] [--help]说明:显示瞬间行程 (process) 的动态参数:ps的参数非常多, 在此仅列出几个常用的参数并大略介绍含义-A ...
- 微信支付URL编解码小方法
--> 打开chrome --> F12或Fn+F12打开控制台 --> encodeURIComponent("url") --> 回车
- Linux常见问题解答--如何修复“tar:Exiting with failure status due to previous errors”
问题: 当我用tar命令来创建一个压缩文件时,总在执行过程中失败,并且抛出一个错误说明"tar:由于前一个错误导致失败退出"("Exiting with failure ...
- HBase Ambari
- csp-s模拟测试52平均数,序列题解
题面:https://www.cnblogs.com/Juve/articles/11602244.html 平均数: 第k个平均数不好求,我们考虑二分,转化成平均数小于x的有几个 虑把序列中的每个数 ...
- #pragma omp parallel for
#pragma omp parallel for是OpenMP中的一个指令,表示接下来的for循环将被多线程执行,另外每次循环之间不能有关系.示例如下: int main(int argc, char ...
- Web前后端缓存技术(缓存的主要作用是什么)
Web前后端缓存技术Web前后端缓存技术(缓存的主要作用是什么) 一.总结 一句话总结: 加快页面打开速度 减少网络带宽消耗 降低服务器压力 1.在Web应用中,应用缓存的地方有哪些? 主要有浏览器缓 ...
- Java导出excel文件(使用jxl)
首先要导入jxl的jar包,可以去maven仓库下载:https://mvnrepository.com/artifact/net.sourceforge.jexcelapi/jxl 通过模拟实现创建 ...