[IOI2002] 任务安排
题意
一些不能改变顺序的任务被分成若干批,每批包含相邻的若干任务。第 $i$ 个任务单独完成所需的时间是 $T_i$。在每批任务开始前,机器需要启动时间 $S$,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务在同一时刻完成)。第 $i$ 个任务的费用是它的完成时刻乘以其费用系数 $C_i$。请确定一个分组方案,使得总费用最小。(原题 $1 \leq N \leq 3 \times 10^5$)
分析
首先很容易想到设 $f[i][j]$ 表示将前 $i$ 个任务分成 $j$ 批完成的最小费用
从而得到状态转移方程 $$f[i][j] = \mathop{min}\limits_{0 \leq k < i} \{ f[k][j - 1] + (S \times j + \sum_{l = 1}^i T[l]) \sum_{l = k + 1}^i C[l] \}$$
用前缀和 $sumT$ 和 $sumC$ 优化后,式子变成 $$f[i][j] = \mathop{min}\limits_{0 \leq k < i} \{ f[k][j - 1] + (S \times j + sumT[i]) \times (sumC[i] - sumC[k]) \}$$
该做法的时间复杂度为 $O(n^3)$
继续思考发现,我们记录 $f$ 数组的第二维 $j$ 只是为了得到机器启动的总时间,而实际上每批任务的启动时间,都会加在此后所有任务的完成时刻上
所以我们可以把第二维删去,状态转移方程就变成了 $$f[i] = \mathop{min}\limits_{0 \leq j < i} \{ f[j] + sumT[i] \times (sumC[i] - sumC[j]) + S \times (sumC[N] - sumC[j]) \}$$
此时时间复杂度就优化到了 $O(n^2)$
但是对于本题数据,这种做法还是不够优
于是就到了本题重点要讲的斜率优化了
首先我们可以把 $min$ 函数去掉,将方程中与 $j$ 有关的项看做变量,得到 $$f[i] = f[j] - (S + sumT[i]) \times sumC[j] + sumT[i] \times sumC[i] + S \times sumC[N]$$
对于 $i$ 状态下的两个决策 $j$ 和 $k$,若决策 $j$ 优于决策 $k$,则满足 $$\begin{align*} & f[j] - (S + sumT[i]) \times sumC[j] + sumT[i] \times sumC[i] + S \times sumC[N] \\ < & f[k] - (S + sumT[i]) \times sumC[k] + sumT[i] \times sumC[i] + S \times sumC[N] \end{align*}$$
移项得到 $$f[j] - f[k] < (S + sumT[i]) \times (sumC[j] - sumC[k])$$
于是我们可以用单调队列维护最优决策,若队首决策不是最优的,则将其出队
然后重新再看这个式子 $$f[j] = (S + sumT[i]) \times sumC[j] + f[i] - sumT[i] \times sumC[i] - S \times sumC[N]$$
在以 $sumC[j]$ 为横坐标,$f[j]$ 为纵坐标的平面直角坐标系中,这是一条以 $S + sumT[i]$ 为斜率,$f[i] - sumT[i] \times sumC[i] - S \times sumC[N]$ 为纵截距的直线,直线的斜率是固定的,纵截距越小,$f[i]$ 越小;同时每个决策 $j$ 都对应着坐标系中的一个点 $(sumC[j], f[j])$
对于任意三个决策 $j_1 < j_2 < j_3$,若这三点形成一个上凸壳,那么无论直线斜率是多少,$j_2$ 都不可能是最优决策(线性规划);若这三点形成一个下凸壳,$j_2$ 则有可能成为最优决策
也就是我们需要维护一个“连接相邻两点的线段斜率”单调递增的下凸壳,此时 $j_2$ 应满足 $$\frac{f[j_2] - f[j_1]}{sumC[j_2] - sumC[j_1]} < \frac{f[j_3] - f[j_2]}{sumC[j_3] - sumC[j_2]}$$
即 $$(f[j_2] - f[j_1]) \times (sumC[j_3] - sumC[j_2]) < (f[j_3] - f[j_2]) \times (sumC[j_2] - sumC[j_1])$$
所以每当加入一个新决策时,我们先可以删去队尾的无用决策,再将其加入队列
由于每个决策最多入列出列各一次,所以维护队列的时间复杂度为 $O(n)$,整个算法也就是 $O(n)$ 的
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 5005 int n, s, l, r;
int t[N], v[N], pre[N], sum[N];
int f[N], q[N]; int main() {
scanf("%d%d", &n, &s);
for (int i = ; i <= n; i++) {
scanf("%d%d", t + i, v + i);
sum[i] = sum[i - ] + t[i];
pre[i] = pre[i - ] + v[i];
}
memset(f, 0x3f, sizeof f);
f[] = ; l = r = ;
for (int i = ; i <= n; i++) {
while (l < r && (f[q[l + ]] - f[q[l]]
<= (s + sum[i]) * (pre[q[l + ]] - pre[q[l]]))) l++;
f[i] = f[q[l]] + sum[i] * (pre[i] - pre[q[l]]) + s * (pre[n] - pre[q[l]]);
while (l < r && (f[q[r]] - f[q[r - ]]) * (pre[i] - pre[q[r]])
>= (f[i] - f[q[r]]) * (pre[q[r]] - pre[q[r - ]])) r--;
q[++r] = i;
}
printf("%d\n", f[n]); return ;
}
[IOI2002] 任务安排的更多相关文章
- Cogs 376. [IOI2002]任务安排(后效性DP)
[IOI2002]任务安排 ★☆ 输入文件:batch.in 输出文件:batch.out 简单对比 时间限制:1 s 内存限制:128 MB N个任务排成一个序列在一台机器上等待完成(顺序不得改变) ...
- 题解【CJOJ1371】[IOI2002]任务安排
P1371 - [IOI2002]任务安排 Description N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务.从时刻0开始,这些任务被分 ...
- 51Nod 1428 活动安排问题
51Nod 1428 活动安排问题 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1428 1428 活 ...
- Beta版本冲刺计划及安排
经过紧张的Alpha阶段,很多组已经从完全不熟悉语言和环境,到现在能够实现初步的功能.下一阶段即将加快编码进度,完成系统功能.强化软件工程的体会.Beta阶段的冲刺时间为期七天,安排在2016.12. ...
- C语言 活动安排问题之二
有若干个活动,第i个开始时间和结束时间是[Si,fi),活动之间不能交叠,要把活动都安排完,至少需要几个教室? #include <stdio.h> #include <string ...
- C语言 活动安排问题
有若干个活动,第i个开始时间和结束时间是[Si,fi),只有一个教室,活动之间不能交叠,求最多安排多少个活动? #include <stdio.h> #include <stdlib ...
- hdu 2037简单贪心--活动安排问题
活动安排问题就是要在所给的活动集合中选出最大的相容活动子集合,是可以用贪心算法有效求解的很好例子.该问题要求高效地安排一系列争用某一公共资源的活动.贪心算法提供了一个简单.漂亮的方法使得尽可能多的活动 ...
- 项目安排(离散化+DP)
题目来源:网易有道2013年校园招聘面试二面试题 题目描述: 小明每天都在开源社区上做项目,假设每天他都有很多项目可以选,其中每个项目都有一个开始时间和截止时间,假设做完每个项目后,拿到报酬都是不同的 ...
- 【BZOJ1725】[Usaco2006 Nov]Corn Fields牧场的安排 状压DP
[BZOJ1725][Usaco2006 Nov]Corn Fields牧场的安排 Description Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M< ...
随机推荐
- Uva12169 扩展欧几里得模板
Uva12169(扩展欧几里得) 题意: 已知 $x_i=(a*x_{i-1}+b) mod 10001$,且告诉你 $x_1,x_3.........x_{2t-1}$, 让你求出其偶数列 解法: ...
- Java出现次数最多的整数
描述 编写一个程序,读入一组整数,这组整数是按照从小到大的顺序排列的,它们的个数N也是由用户输入的,最多不会超过20.然后程序将对这个数组进行统计,把出现次数最多的那个数组元素值打印出来.如果有两个元 ...
- JavaSE学习笔记(2)---面向对象基础
JavaSE学习笔记(2)---面向对象基础 1.面向对象具有三大特征:封装性.继承性和多态性,而面向过程没有继承性和多态性,并且面向过程的封装只是封装功能,而面向对象可以封装数据和功能.所以面向对象 ...
- Android中的Service基础
Service主要用于后台程序和跨进程访问,可以在不显示界面的前提下完成任务,不影响用户的其他操作. 这里我展示一些基本的用法 新建一个Service类 package com.example.ser ...
- 备战2020年金三银四,看这一篇面试文章就够了(合适各级Java人员)
本文不是原创.为整理所得!但是内容是很干货的!我看了也有帮助.做个分享. 企业开始上班,就意味着大批量的招聘需求正在路上.在即将到来的金三银四跳槽面试季,提前祝贺大家拿到大厂offer.前程似锦.前程 ...
- Win10安装2 —— 版本的选择与下载
本文内容皆为作者原创,如需转载,请注明出处:https://www.cnblogs.com/xuexianqi/p/12368795.html 一:各个版本的区别 1.Windows10 Home(家 ...
- eclipse中创建了web项目,src下创建子目录是平级的情况
1.在以下可设置不同的视图 windows->show view菜单 ->点Other...... 然后在搜索框里输入你想要的视图 2.在Project Explorer下创建的包看 ...
- redis五大数据类型以及常用操作命令
Redis的五大数据类型 String(字符串) string是redis最基本的类型,你可以理解成与Memcached一模一样的类型,一个key对应一个value.string类型是二进制安全的.意 ...
- 【NOIP2011提高组】计算系数
计算系数 算法:真·滚动数组模拟!!! 马上CSP/S了,这是远在今年暑假前的一天的校内考试题中的一道.当时做的时候不会组合数,不会二项式定理,不会DP,不会……只知道应该n*n的空间存一个杨辉三角形 ...
- Python读取Excel,日期列读出来是数字的处理
Python读取Excel,里面如果是日期,直接读出来是float类型,无法直接使用. 通过判断读取表格的数据类型ctype,进一步处理. 返回的单元格内容的类型有5种: ctype: 0 empty ...