Python基础与科学计算常用方法

本文使用的是Jupyter NotebookPython3。你可以将代码直接复制到Jupyter Notebook中运行,以便更好的学习。

导入所需要的头文件

import numpy as np
import numpy as np
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import time
from scipy.optimize import leastsq
from scipy import stats
import scipy.optimize as opt
import matplotlib.pyplot as plt
from scipy.stats import norm, poisson
import math
import scipy
from scipy.interpolate import BarycentricInterpolator
from scipy.interpolate import CubicSpline
a = np.arange(0, 60, 10).reshape((-1, 1)) + np.arange(6)
print (a)

1.使用array创建

标准Python的列表(list)中,元素本质是对象。

如:L = [1, 2, 3],需要3个指针和三个整数对象,对于数值运算比较浪费内存和CPU。

因此,Numpy提供了ndarray(N-dimensional array object)对象:存储单一数据类型的多维数组。

# 通过array函数传递list对象
L = [1, 2, 3, 4, 5, 6]
print ("L = ", L)
a = np.array(L) # 数组没有逗号
print ("a = ", a)
print (type(a), type(L))
# 若传递的是多层嵌套的list,将创建多维数组
b = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
print (b)
# 数组大小可以通过其shape属性获得
print (a.shape)
print (b.shape)
# # 也可以强制修改shape
b.shape = 4, 3
print (b)
# 注:从(3,4)改为(4,3)并不是对数组进行转置,而只是改变每个轴的大小,数组元素在内存中的位置并没有改变
# 当某个轴为-1时,将根据数组元素的个数自动计算此轴的长度
b.shape = 2, -1
print (b)
print (b.shape)
b.shape = 3, 4
print (b)
# 使用reshape方法,可以创建改变了尺寸的新数组,原数组的shape保持不变
c = b.reshape((4, -1))
print ("b = \n", b)
print ('c = \n', c)
# 数组b和c共享内存,修改任意一个将影响另外一个
b[0][1] = 20
print ("b = \n", b)
print ("c = \n", c)
# 数组的元素类型可以通过dtype属性获得
print (a.dtype)
print (b.dtype)
# 可以通过dtype参数在创建时指定元素类型
d = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=np.float)
f = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], dtype=np.complex)
print (d)
print (f)
# 如果更改元素类型,可以使用astype安全的转换
f = d.astype(np.int)
print (f)
# 但不要强制仅修改元素类型,如下面这句,将会以int来解释单精度float类型
d.dtype = np.int
print (d)

2.使用函数创建

如果生成一定规则的数据,可以使用NumPy提供的专门函数

arange函数类似于python的range函数:指定起始值、终止值和步长来创建数组,和Python的range类似,arange同样不包括终值;但arange可以生成浮点类型,而range只能是整数类型

a = np.arange(1, 10, 0.5)
print (a)
# linspace函数通过指定起始值、终止值和元素个数来创建数组,缺省包括终止值
b = np.linspace(1, 10, 10)
print ('b = ', b)
# 可以通过endpoint关键字指定是否包括终值
c = np.linspace(1, 10, 10, endpoint=False)
print ('c = ', c)
# 和linspace类似,logspace可以创建等比数列
# 下面函数创建起始值为10^1,终止值为10^2,有10个数的等比数列
d = np.logspace(1, 2, 9, endpoint=True)
print (d)
# 下面创建起始值为2^0,终止值为2^10(包括),有10个数的等比数列
f = np.logspace(0, 10, 10, endpoint=True, base=2)
print (f)
# 使用 frombuffer, fromstring, fromfile等函数可以从字节序列创建数组
s = 'abcdz'
g = np.fromstring(s, dtype=np.int8) # 复制对应的ASII码
print (g)

3.存取

3.1常规方法

# 数组元素的存取方法和Python的标准方法相同
a = np.arange(10)
print (a) # 获取某个元素
print (a[3])
# 切片[3,6),左闭右开
print (a[3:6])
# 省略开始下标,表示从0开始
print (a[:5])
# 下标为负表示从后向前数
print (a[3:])
# 步长为2
print (a[1:9:2]) # 步长为-1,即翻转
print (a[::-1]) # 切片数据是原数组的一个视图,与原数组共享内容空间,可以直接修改元素值
a[1:4] = 10, 20, 30
print (a) # 因此,在实践中,切实注意原始数据是否被破坏,如:
b = a[2:5]
b[0] = 200
print (a)

3.2 整数/布尔数组存取

3.2.1
# 根据整数数组存取:当使用整数序列对数组元素进行存取时,
# 将使用整数序列中的每个元素作为下标,整数序列可以是列表(list)或者数组(ndarray)。
# 使用整数序列作为下标获得的数组不和原始数组共享数据空间。
a = np.logspace(0, 9, 10, base=2)
print (a)
i = np.arange(0, 10, 2)
print (i)
# 利用i取a中的元素
b = a[i]
print (b)
# b的元素更改,a中元素不受影响
b[2] = 1.6
print (b)
print (a)
3.2.2
# 使用布尔数组i作为下标存取数组a中的元素:返回数组a中所有在数组b中对应下标为True的元素
# 生成10个满足[0,1)中均匀分布的随机数
a = np.random.rand(10)
print (a)
# 大于0.5的元素索引
print (a > 0.5)
# 大于0.5的元素
b = a[a > 0.5]
print (b)
# 将原数组中大于0.5的元素截取成0.5
a[a > 0.5] = 0.5
print (a)
# # # b不受影响
print (b)

3.3 二维数组的切片

a = np.arange(0, 60, 10)    # 行向量
print ('a = ', a)
b = a.reshape((-1, 1)) # 转换成列向量
print (b)
c = np.arange(6)
print (c)
f = b + c # 行 + 列
print (f)
# 合并上述代码:
a = np.arange(0, 60, 10).reshape((-1, 1)) + np.arange(6)
print (a)
# 二维数组的切片
print (a[[0, 1, 2], [2, 3, 4]])
print (a[4, [2, 3, 4]])
print (a[4:, [2, 3, 4]])
i = np.array([True, False, True, False, False, True])
print (a[i])
print (a[i, 3])

4.1 numpy与Python数学库的时间比较

for j in np.logspace(0, 7, 10):
j = int(j)
x = np.linspace(0, 10, j)
start = time.clock()
y = np.sin(x)
t1 = time.clock() - start x = x.tolist()
start = time.clock()
for i, t in enumerate(x):
x[i] = math.sin(t)
t2 = time.clock() - start
print (j, ": ", t1, t2, t2/t1)

# 4.2 元素去重

4.2.1直接使用库函数

a = np.array((1, 2, 3, 4, 5, 5, 7, 3, 2, 2, 8, 8))
print ('原始数组:', a)
# 使用库函数unique
b = np.unique(a)
print ('去重后:', b)
4.2.2 二维数组的去重,结果会是预期的么?
c = np.array(((1, 2), (3, 4), (5, 6), (1, 3), (3, 4), (7, 6)))
print (u'二维数组:\n', c)
print ('去重后:', np.unique(c))
4.2.3 方案1:转换为虚数
# r, i = np.split(c, (1, ), axis=1)
# x = r + i * 1j
x = c[:, 0] + c[:, 1] * 1j
print ('转换成虚数:', x)
print ('虚数去重后:', np.unique(x))
print (np.unique(x, return_index=True)) # 思考return_index的意义
idx = np.unique(x, return_index=True)[1]
print ('二维数组去重:\n', c[idx])
4.2.3 方案2:利用set
print ('去重方案2:\n', np.array(list(set([tuple(t) for t in c]))))

4.3 stack and axis

a = np.arange(1, 10).reshape((3, 3))
b = np.arange(11, 20).reshape((3, 3))
c = np.arange(101, 110).reshape((3, 3))
print ('a = \n', a)
print ('b = \n', b)
print ('c = \n', c)
print ('axis = 0 \n', np.stack((a, b, c), axis=0))
print ('axis = 1 \n', np.stack((a, b, c), axis=1))
print ('axis = 2 \n', np.stack((a, b, c), axis=2))
a = np.arange(1, 10).reshape(3,3)
print (a)
b = a + 10
print (b)
print (np.dot(a, b)) # dot 正常的矩阵乘法
print (a * b) # * 对应元素的相乘
a = np.arange(1, 10)
print (a)
b = np.arange(20,25)
print (b)
print (np.concatenate((a, b)))

5.绘图

5.1 绘制正态分布概率密度函数

# 自定义字体使中文正常显示
mpl.rcParams['font.sans-serif'] = [u'SimHei'] #FangSong/黑体 FangSong/KaiTi
mpl.rcParams['axes.unicode_minus'] = False mu = 0
sigma = 1
x = np.linspace(mu - 3 * sigma, mu + 3 * sigma, 51)
y = np.exp(-(x - mu) ** 2 / (2 * sigma ** 2)) / (math.sqrt(2 * math.pi) * sigma)
print (x.shape)
print ('x = \n', x)
print (y.shape)
print ('y = \n', y) plt.figure(facecolor='w') # 背景色设置为白色
# plt.plot(x, y, 'ro-', linewidth=2)
plt.plot(x, y, 'r-', x, y, 'go', linewidth=2, markersize=8)
plt.xlabel('X', fontsize=15)
plt.ylabel('Y', fontsize=15)
plt.title(u'高斯分布函数', fontsize=18)
plt.grid(True)
plt.show()

5.2 损失函数

# Logistic损失(-1,1)/SVM Hinge损失/ 0/1损失
plt.figure(figsize=(10,8),dpi=100) # 指定图像尺寸和dpi
x = np.array(np.linspace(start=-2, stop=3, num=1001, dtype=np.float))
y_logit = np.log(1 + np.exp(-x)) / math.log(2)
y_boost = np.exp(-x)
y_01 = x < 0
y_hinge = 1.0 - x
y_hinge[y_hinge < 0] = 0
plt.plot(x, y_logit, 'r-', label='Logistic Loss', linewidth=2)
plt.plot(x, y_01, 'g-', label='0/1 Loss', linewidth=2)
plt.plot(x, y_hinge, 'b-', label='Hinge Loss', linewidth=2)
plt.plot(x, y_boost, 'm--', label='Adaboost Loss', linewidth=2)
plt.grid() # 画格子出来
plt.legend(loc='upper right') # 图例显示位置
plt.savefig('1.png')
plt.show()

5.3 x^x

def f(x):
y = np.ones_like(x)
i = x > 0
y[i] = np.power(x[i], x[i])
i = x < 0
y[i] = np.power(-x[i], -x[i])
return y x = np.linspace(-1.3, 1.3, 101)
y = f(x)
plt.plot(x, y, 'g-', label='x^x', linewidth=2)
plt.grid()
plt.legend(loc='upper left')
plt.show()

5.4 胸型线

x = np.arange(1, 0, -0.001)
y = (-3 * x * np.log(x) + np.exp(-(40 * (x - 1 / np.e)) ** 4) / 25) / 2
plt.figure(figsize=(5,7), facecolor='w')
plt.plot(y, x, 'r-', linewidth=2)
plt.grid(True)
plt.title(u'胸型线', fontsize=20)
# plt.savefig('breast.png')
plt.show()

5.5 心形线

t = np.linspace(0, 2*np.pi, 100)
x = 16 * np.sin(t) ** 3
y = 13 * np.cos(t) - 5 * np.cos(2*t) - 2 * np.cos(3*t) - np.cos(4*t)
plt.plot(x, y, 'r-', linewidth=2)
plt.grid(True)
plt.show()

5.6 渐开线

t = np.linspace(0, 50, num=1000)
x = t*np.sin(t) + np.cos(t)
y = np.sin(t) - t*np.cos(t)
plt.plot(x, y, 'r-', linewidth=2)
plt.grid()
plt.show()

5.7Bar

x = np.arange(0, 10, 0.1)
y = np.sin(x)
plt.bar(x, y, width=0.04, linewidth=0.2)
plt.plot(x, y, 'r--', linewidth=2)
plt.title(u'Sin曲线')
plt.xticks(rotation=-60)
plt.xlabel('X')
plt.ylabel('Y')
plt.grid()
plt.show()

6. 概率分布

6.1 均匀分布

x = np.random.rand(10000)
t = np.arange(len(x))
# plt.hist(x, 30, color='#000000', alpha=0.5, label=u'均匀分布') # alpha透明度
plt.plot(t, x, 'g.', label=u'均匀分布') # .小点, o 圈, - 线
plt.legend(loc='upper left')
plt.grid()
plt.show()

6.2 验证中心极限定理

t = 1000
a = np.zeros(10000)
for i in range(t):
a += np.random.uniform(-5, 5, 10000)
a /= t
plt.hist(a, bins=30, color='g', alpha=0.5, normed=True, label=u'均匀分布叠加')
plt.legend(loc='upper left')
plt.grid()
plt.show()
# 6.21 其他分布的中心极限定理
lamda = 10
p = stats.poisson(lamda)
y = p.rvs(size=1000)
mx = 30
r = (0, mx)
bins = r[1] - r[0]
plt.figure(figsize=(10, 8), facecolor='w')
plt.subplot(121)
plt.hist(y, bins=bins, range=r, color='g', alpha=0.8, normed=True)
t = np.arange(0, mx+1)
plt.plot(t, p.pmf(t), 'ro-', lw=2)
plt.grid(True) N = 1000
M = 10000
plt.subplot(122)
a = np.zeros(M, dtype=np.float)
p = stats.poisson(lamda)
for i in np.arange(N):
y = p.rvs(size=M)
a += y
a /= N
plt.hist(a, bins=20, color='g', alpha=0.8, normed=True)
plt.grid(b=True)
plt.show()

6.3 Poisson分布


x = np.random.poisson(lam=5, size=10000)
print (x)
pillar = 15
a = plt.hist(x, bins=pillar, normed=True, range=[0, pillar], color='g', alpha=0.5)
plt.grid()
# plt.show()
print (a)
print (a[0].sum())

6.4 直方图的使用

mu = 2
sigma = 3
data = mu + sigma * np.random.randn(1000)
h = plt.hist(data, 30, normed=1, color='#a0a0ff')
x = h[1]
y = norm.pdf(x, loc=mu, scale=sigma)
plt.plot(x, y, 'r--', x, y, 'ro', linewidth=2, markersize=4)
plt.grid()
plt.show()

6.5 插值

rv = poisson(5)
x1 = a[1]
y1 = rv.pmf(x1)
itp = BarycentricInterpolator(x1, y1) # 重心插值
x2 = np.linspace(x.min(), x.max(), 50)
y2 = itp(x2)
cs = scipy.interpolate.CubicSpline(x1, y1) # 三次样条插值
plt.plot(x2, cs(x2), 'm--', linewidth=5, label='CubicSpine') # 三次样条插值
plt.plot(x2, y2, 'g-', linewidth=3, label='BarycentricInterpolator') # 重心插值
plt.plot(x1, y1, 'r-', linewidth=1, label='Actural Value') # 原始值
plt.legend(loc='upper right')
plt.grid()
plt.show()

7. 绘制三维图像

# x, y = np.ogrid[-3:3:100j, -3:3:100j]
# print(x,y)
u = np.linspace(-3, 3, 101)
x, y = np.meshgrid(u, u)
z = x*y*np.exp(-(x**2 + y**2)/2) / math.sqrt(2*math.pi)
# z = x*y*np.exp(-(x**2 + y**2)/2) / math.sqrt(2*math.pi)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# ax.plot_surface(x, y, z, rstride=5, cstride=5, cmap=cm.coolwarm, linewidth=0.1) #
ax.plot_surface(x, y, z, rstride=5, cstride=5, cmap=cm.Accent, linewidth=0.5)
plt.show()
# cmaps = [('Perceptually Uniform Sequential',
# ['viridis', 'inferno', 'plasma', 'magma']),
# ('Sequential', ['Blues', 'BuGn', 'BuPu',
# 'GnBu', 'Greens', 'Greys', 'Oranges', 'OrRd',
# 'PuBu', 'PuBuGn', 'PuRd', 'Purples', 'RdPu',
# 'Reds', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd']),
# ('Sequential (2)', ['afmhot', 'autumn', 'bone', 'cool',
# 'copper', 'gist_heat', 'gray', 'hot',
# 'pink', 'spring', 'summer', 'winter']),
# ('Diverging', ['BrBG', 'bwr', 'coolwarm', 'PiYG', 'PRGn', 'PuOr',
# 'RdBu', 'RdGy', 'RdYlBu', 'RdYlGn', 'Spectral',
# 'seismic']),
# ('Qualitative', ['Accent', 'Dark2', 'Paired', 'Pastel1',
# 'Pastel2', 'Set1', 'Set2', 'Set3']),
# ('Miscellaneous', ['gist_earth', 'terrain', 'ocean', 'gist_stern',
# 'brg', 'CMRmap', 'cubehelix',
# 'gnuplot', 'gnuplot2', 'gist_ncar',
# 'nipy_spectral', 'jet', 'rainbow',
# 'gist_rainbow', 'hsv', 'flag', 'prism'])]

欢迎关注我的公众号,阅读更多新手入门资料。

Python基础与科学计算常用方法的更多相关文章

  1. Python Base of Scientific Stack(Python基础之科学栈)

    Python Base of Scientific Stack(Python基础之科学栈) 1. Python的科学栈(Scientific Stack) NumPy NumPy提供度多维数组对象,以 ...

  2. Python 基础教程 —— Pandas 库常用方法实例说明

    目录 1. 常用方法 pandas.Series 2. pandas.DataFrame ([data],[index])   根据行建立数据 3. pandas.DataFrame ({dic})  ...

  3. window下从python开始安装科学计算环境

    Numpy等Python科学计算包的安装与配置 参考: 1.下载并安装 http://www.jb51.net/article/61810.htm 1.安装easy_install,就是为了我们安装第 ...

  4. ubuntu安装Python环境以及科学计算环境

    参考:http://blog.csdn.net/a1311543690/article/details/ 1.sudo apt-get install python-pip pip是Python的一个 ...

  5. python安装numpy科学计算模块

    解决两个问题: (1)Import Error: No module named numpy (2)Python version 2.7 required, which was not found i ...

  6. python的一些科学计算的包

    在安装numpy这类科学计算的包的时候,pip下载的东西有时候缺少一些东西. 可以到这里下载,根据提示信息,少哪个包,或者哪个包出现错误就安装哪个包. PIL到这里下载

  7. 【python基础语法】字符串常用方法 、列表(第3天课堂笔记)

    """ 字符串的方法 join 字符串拼接,将列表转换为字符串 find 查找元素位置 count 查找元素个数 replace 替换字符 split 字符串分割,将字符 ...

  8. Python基础学习----字符串的常用方法

    # Python字符串 # 大多数的语言定义字符串是双引号,Python既可以双引号,也可以单引号.但使用也有区别 # 单双引号的使用 My_name="bai-boy" Demo ...

  9. Python基础学习-列表的常用方法

    列表方法 = Python 3.5.2 (default, Sep 14 2016, 11:27:58) [GCC 6.2.1 20160901 (Red Hat 6.2.1-1)] on linux ...

随机推荐

  1. Pikachu-URL重定向

    不安全的url跳转 不安全的url跳转问题可能发生在一切执行了url地址跳转的地方.如果后端采用了前端传进来的(可能是用户传参,或者之前预埋在前端页面的url地址)参数作为了跳转的目的地,而又没有做判 ...

  2. 2020.02.01【NOIP提高组】模拟B 组总结反思——数列(sequence) 树 【2012东莞市选】时间流逝 挖掘机技术哪家强

    T1 数列(sequence) 比赛时 我自以为是地打了简简单单一个判断--- 之后 Waiting-- T2 2753. 树(tree) 比赛时 这题我居然比赛时也想了很久,可能是因为我太懒,我很早 ...

  3. Building a Space Station POJ - 2031 三维最小生成树,其实就是板子题

    #include<iostream> #include<cmath> #include<algorithm> #include<cstdio> usin ...

  4. 06-SV随机化

    1.受约束的随机测试法(CRT) 随着设计变得越来越大,要产生一个完整的激励集来测试设计的功能变得越来越困难.解决的办法是采用受约束的随机测试法自动产生测试集.CRT环境比定向测试的环境复杂,不仅需要 ...

  5. 360独角兽实习,连载周记(gnuradio 低功耗蓝牙BLE 综合工具模块编写)

    (有点乱,之后会有整理) 最近在用写一套gnuradio的OOT模块,主要用来进行BLE嗅探的,github上有了一些工具,可是他们并没有很好的模块化,于是打算自己写一个,这样以后做一些其他的项目,模 ...

  6. vsftpd最详细的配置文件

    vsftpd作为一个主打安全的FTP服务器,有很多的选项设置.下面介绍了vsftpd的配置文件列表,而所有的配置都是基于vsftpd.conf这个配置文件的.本文将提供完整的vsftpd.conf的中 ...

  7. laravel中{{}}和{!! !!}的区别

    1.{{}}和{!! !!} 中{{}}支持转义     一段html代码只是被当成普通的字符串输出 ,{!! !!} 不支持转移  一段html代码可以被正常的解析 1.2具体什么意思呢我们上代码演 ...

  8. centos7中python2.7升级到python3.7

    一.下载源码包 # 切换到root目录 [root@localhost ~] cd /root/ # 安装wget [root@localhost ~] yum -y install wget # 使 ...

  9. 前端Yslow的23个优化原则

    前端Yslow的23个优化原则 最常遇见的前端优化问题. Yslow是雅虎开发的基于网页性能分析浏览器插件,可以检测出网页的具体性能值,并且有著名的Yslow 23条优化规则,这23条,就够我们玩的了 ...

  10. 《NVM-Express-1_4-2019.06.10-Ratified》学习笔记(8.7)Standard Vendor Specific Command Format

    8.7 Standard Vendor Specific Command Format 标准的厂商特定命令格式 Controller可以支持Figure 106中定义的标准的Vendor Specif ...