list comprehensions

列表解释

You now have all the knowledge necessary to begin writing list comprehensions! Your job in this exercise is to write a list comprehension that produces a list of the squares of the numbers ranging from 0 to 9.

Create list comprehension: squares
squares = [i**2 for i in range(0,10)]

nested list comprehensions

[[output expression] for iterator variable in iterable]

writing a list comprehension within another list comprehension, or nested list comprehensions.

# Create a 5 x 5 matrix using a list of lists: matrix
matrix = [[col for col in range(5)] for row in range(5)] # Print the matrix
for row in matrix:
print(row)

you can apply a conditional statement to test the iterator variable by adding an if statement in the optional predicate expression part after the for statement in the comprehension:

通用表达式,这种形式,看别人代码的时候出现很多,确实省代码的


[ output expression for iterator variable in iterable if predicate expression ].
# Create a list of strings: fellowship
fellowship = ['frodo', 'samwise', 'merry', 'aragorn', 'legolas', 'boromir', 'gimli'] # Create list comprehension: new_fellowship
new_fellowship = [member for member in fellowship if len(member) >= 7] # Print the new list
print(new_fellowship) <script.py> output:
['samwise', 'aragorn', 'legolas', 'boromir']

using a list comprehension and an if-else conditional statement in the output expression

输出的结果是一个if-else语句,这样挺直观简单的

# Create a list of strings: fellowship
fellowship = ['frodo', 'samwise', 'merry', 'aragorn', 'legolas', 'boromir', 'gimli'] # Create list comprehension: new_fellowship
new_fellowship = [member if len(member) >= 7 else '' for member in fellowship] # Print the new list
print(new_fellowship)

Dict comprehensions

字典解析

同理字典解析

比较生成器和列表解析的结果

In [1]: # List of strings
... fellowship = ['frodo', 'samwise', 'merry', 'aragorn', 'legolas', 'boromir', 'gimli']
...
... # List comprehension
... fellow1 = [member for member in fellowship if len(member) >= 7] In [2]: fellow2 = (member for member in fellowship if len(member) >= 7) In [3]: fellow1
#很明显,列表解析输出的是一个列表
Out[3]: ['samwise', 'aragorn', 'legolas', 'boromir'] In [4]: fellow2
#生成器就是一个生成器对象
Out[4]: <generator object <genexpr> at 0x7f3821ba3a40>

一个列表解析的小例子

# Extract the created_at column from df: tweet_time
tweet_time = df['created_at'] # Extract the clock time: tweet_clock_time
tweet_clock_time = [entry[11:19] for entry in tweet_time if entry[17:19] == '19'] # Print the extracted times
print(tweet_clock_time)

zip()

  • zip()是可迭代对象,使用时必须将其包含在一个list中,方便一次性显示出所有结果
  • 它可以将多个序列(列表、元组、字典、集合、字符串以及 range() 区间构成的列表)“压缩”成一个 zip 对象。所谓“压缩”,其实就是将这些序列中对应位置的元素重新组合,生成一个个新的元组
# Zip lists: zipped_lists
zipped_lists = zip(feature_names,row_vals) # Create a dictionary: rs_dict
rs_dict = dict(zipped_lists) # Print the dictionary
print(rs_dict)

yeild

生成器的关键字,功能有点类似于return

参考

datacamp上面给的一个实例练习

数据集来自the World Bank's World Development Indicators

通过这个小demo能够更好的理解函数的定义,就是把所有的需求放到一个函数里,想让这个函数通用,那就提取公共的参数,从外面传进去。

# Define lists2dict()
def lists2dict(list1, list2):
"""Return a dictionary where list1 provides
the keys and list2 provides the values.""" # Zip lists: zipped_lists
zipped_lists = zip(list1, list2) # Create a dictionary: rs_dict
rs_dict = dict(zipped_lists) # Return the dictionary
return rs_dict # Call lists2dict: rs_fxn
rs_fxn = lists2dict(feature_names,row_vals) # Print rs_fxn
print(rs_fxn)

python write file

# Open a connection to the file
# 打开一个文件,读出里面的数据
with open('world_dev_ind.csv') as file: # Skip the column names
file.readline() # Initialize an empty dictionary: counts_dict
counts_dict = {} # Process only the first 1000 rows
for j in range(0,1000): # Split the current line into a list: line
line = file.readline().split(',') # Get the value for the first column: first_col
first_col = line[0] # If the column value is in the dict, increment its value
if first_col in counts_dict.keys():
counts_dict[first_col] += 1 # Else, add to the dict and set value to 1
else:
counts_dict[first_col] = 1 # Print the resulting dictionary
print(counts_dict)

自定义一个绘图函数

# Define plot_pop()
def plot_pop(filename, country_code): # Initialize reader object: urb_pop_reader
urb_pop_reader = pd.read_csv(filename, chunksize=1000) # Initialize empty DataFrame: data
data = pd.DataFrame() # Iterate over each DataFrame chunk
for df_urb_pop in urb_pop_reader:
# Check out specific country: df_pop_ceb
df_pop_ceb = df_urb_pop[df_urb_pop['CountryCode'] == country_code] # Zip DataFrame columns of interest: pops
pops = zip(df_pop_ceb['Total Population'],
df_pop_ceb['Urban population (% of total)']) # Turn zip object into list: pops_list
pops_list = list(pops) # Use list comprehension to create new DataFrame column 'Total Urban Population'
df_pop_ceb['Total Urban Population'] = [int(tup[0] * tup[1] * 0.01) for tup in pops_list] # Append DataFrame chunk to data: data
data = data.append(df_pop_ceb) # Plot urban population data
data.plot(kind='scatter', x='Year', y='Total Urban Population')
plt.show() # Set the filename: fn
fn = 'ind_pop_data.csv' # Call plot_pop for country code 'CEB'
plot_pop(fn,'CEB') # Call plot_pop for country code 'ARB' plot_pop(fn,'ARB')

python list comprehensions的更多相关文章

  1. 每天学点Python之comprehensions

    每天学点Python之comprehensions 推导式能够简化对数据的处理,让代码简洁的同一时候还具有非常高的可读性.这在Python中非经常见. 列表推导式 通过列表推导式能够对列表中的全部元素 ...

  2. [翻译]Python List Comprehensions: Explained Visually || Python列表解析式

    原文1地址: http://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/ 原文2地址: http://blog.tea ...

  3. CS224N Assignment1 Section 1

    运行环境需求 # All Import Statements Defined Here # Note: Do not add to this list. # All the dependencies ...

  4. [NLP] cs224n-2019 Assignment 1 Exploring Word Vectors

      CS224N Assignment 1: Exploring Word Vectors (25 Points)¶ Welcome to CS224n! Before you start, make ...

  5. Python基础知识--Slice(切片)和Comprehensions(生成式)

    最近在Youtube的Python视频教程上学习Python相关的基础知识,视频由Corey Schafer制作,讲得十分简单明了,英文发音也比较清晰,几乎都能听懂,是一个不错的Python入门学习的 ...

  6. Python中的Comprehensions和Generations

    Python中的Comprehensions和Generations语法都是用来迭代的.Comprehensions语法可用于list,set,dictionary上,而Generations语法分为 ...

  7. [Python's] Python's list comprehensions a

    # Python's list comprehensions are awesome. vals = [expression for value in collection if condition] ...

  8. [Python] 字典推导 PEP 274 -- Dict Comprehensions

    之前自己也遇到过一次,这段时间在群里也遇到过几次的一个问题 用python2.7写的一段程序.里面用到了字典推导式,可是server版本号是python2.6,无法执行. 今天查了下关于Dict Co ...

  9. Python高级特性——列表生成式(list Comprehensions)

    List Comprehensions 即列表生成式,是Python内置的强大的用来生成列表list的生成式. 简单菜: >>> l = list(range(2,13)) > ...

随机推荐

  1. css 浏览兼容问题及解决办法 (2)

    1.div的垂直居中问题 vertical-align:middle; 将行距增加到和整个DIV一样高 line-height:200px; 然后插入文字,就垂直居中了.缺点是要控制内容不要换行 2. ...

  2. 虚拟机 .NAT模式下 配置静态ip后无法ping域名,但可以ping公网ip 问题处理

    在之前的文章 https://www.cnblogs.com/dxxdsw/p/10643540.html 中,在虚拟机中给linux配置了静态ip.[.NAT模式] centos系统: 今天连接发现 ...

  3. Thread.yield( )方法

    Java线程中的Thread.yield( )方法,译为线程让步.顾名思义,就是说当一个线程使用了这个方法之后,它就会把自己CPU执行的时间让掉,让自己或者其它的线程运行,注意是让自己或者其他线程运行 ...

  4. 校招必看硬核干货:C++怎么学才能进大厂

    目录 关于小猿 如何找资料 自我定位 岗位需求 学习路线及时间安排 资料获取方式 C++语言在历史舞台上出现了不短的时间,虽然一直面临着Python,Go等新语言的挑战,但它在基础架构和大型软件上的优 ...

  5. tomcat 安装在 linux

    简单说下什么是tomcat?它与apache web服务器的关系? Apache是web服务器(静态解析,如HTML),tomcat是java应用服务器(动态解析,如JSP.PHP) Tomcat只是 ...

  6. OSPF配置实验(一)

    单区域OSPF 命令: R1(config)#router ospf 1        //启动OSPF进程 R1(config-router)#router-id 1.1.1.1        // ...

  7. 风物长宜放眼量,人间正道是沧桑 - 一位北美 IT 技术人破局

    引言 我对于本科时光的印象,还停留在那所普通 211 大学的建筑物之间,我坐在大学的时光长廊里,满眼望去,都是经历的过的故事.可毕业后回首,却很少有人能说,自己从来没有迷茫过.迷茫,仿佛就是一团乌云, ...

  8. SpringBoot图文教程7—SpringBoot拦截器的使用姿势这都有

    有天上飞的概念,就要有落地的实现 概念十遍不如代码一遍,朋友,希望你把文中所有的代码案例都敲一遍 先赞后看,养成习惯 SpringBoot 图文教程系列文章目录 SpringBoot图文教程1「概念+ ...

  9. git中常混淆的操作

    1, git fetch 和 git pull 参考链接: https://stackoverflow.com/questions/292357/what-is-the-difference-betw ...

  10. 浅析word2vec(一)

    1 word2vec 在自然语言处理的大部分任务中,需要将大量文本数据传入计算机中,用以信息发掘以便后续工作.但是目前计算机所能处理的只能是数值,无法直接分析文本,因此,将原有的文本数据转换为数值数据 ...