python list comprehensions
list comprehensions
列表解释
You now have all the knowledge necessary to begin writing list comprehensions! Your job in this exercise is to write a list comprehension that produces a list of the squares of the numbers ranging from 0 to 9.
Create list comprehension: squares
squares = [i**2 for i in range(0,10)]
nested list comprehensions
[[output expression] for iterator variable in iterable]
writing a list comprehension within another list comprehension, or nested list comprehensions.
# Create a 5 x 5 matrix using a list of lists: matrix
matrix = [[col for col in range(5)] for row in range(5)]
# Print the matrix
for row in matrix:
print(row)
you can apply a conditional statement to test the iterator variable by adding an if statement in the optional predicate expression part after the for statement in the comprehension:
通用表达式,这种形式,看别人代码的时候出现很多,确实省代码的
[ output expression for iterator variable in iterable if predicate expression ].
# Create a list of strings: fellowship
fellowship = ['frodo', 'samwise', 'merry', 'aragorn', 'legolas', 'boromir', 'gimli']
# Create list comprehension: new_fellowship
new_fellowship = [member for member in fellowship if len(member) >= 7]
# Print the new list
print(new_fellowship)
<script.py> output:
['samwise', 'aragorn', 'legolas', 'boromir']
using a list comprehension and an if-else conditional statement in the output expression
输出的结果是一个if-else语句,这样挺直观简单的
# Create a list of strings: fellowship
fellowship = ['frodo', 'samwise', 'merry', 'aragorn', 'legolas', 'boromir', 'gimli']
# Create list comprehension: new_fellowship
new_fellowship = [member if len(member) >= 7 else '' for member in fellowship]
# Print the new list
print(new_fellowship)
Dict comprehensions
字典解析
同理字典解析
比较生成器和列表解析的结果
In [1]: # List of strings
... fellowship = ['frodo', 'samwise', 'merry', 'aragorn', 'legolas', 'boromir', 'gimli']
...
... # List comprehension
... fellow1 = [member for member in fellowship if len(member) >= 7]
In [2]: fellow2 = (member for member in fellowship if len(member) >= 7)
In [3]: fellow1
#很明显,列表解析输出的是一个列表
Out[3]: ['samwise', 'aragorn', 'legolas', 'boromir']
In [4]: fellow2
#生成器就是一个生成器对象
Out[4]: <generator object <genexpr> at 0x7f3821ba3a40>
一个列表解析的小例子
# Extract the created_at column from df: tweet_time
tweet_time = df['created_at']
# Extract the clock time: tweet_clock_time
tweet_clock_time = [entry[11:19] for entry in tweet_time if entry[17:19] == '19']
# Print the extracted times
print(tweet_clock_time)
zip()
- zip()是可迭代对象,使用时必须将其包含在一个list中,方便一次性显示出所有结果
- 它可以将多个序列(列表、元组、字典、集合、字符串以及 range() 区间构成的列表)“压缩”成一个 zip 对象。所谓“压缩”,其实就是将这些序列中对应位置的元素重新组合,生成一个个新的元组
# Zip lists: zipped_lists
zipped_lists = zip(feature_names,row_vals)
# Create a dictionary: rs_dict
rs_dict = dict(zipped_lists)
# Print the dictionary
print(rs_dict)
yeild
生成器的关键字,功能有点类似于return
参考
datacamp上面给的一个实例练习
数据集来自the World Bank's World Development Indicators
通过这个小demo能够更好的理解函数的定义,就是把所有的需求放到一个函数里,想让这个函数通用,那就提取公共的参数,从外面传进去。
# Define lists2dict()
def lists2dict(list1, list2):
"""Return a dictionary where list1 provides
the keys and list2 provides the values."""
# Zip lists: zipped_lists
zipped_lists = zip(list1, list2)
# Create a dictionary: rs_dict
rs_dict = dict(zipped_lists)
# Return the dictionary
return rs_dict
# Call lists2dict: rs_fxn
rs_fxn = lists2dict(feature_names,row_vals)
# Print rs_fxn
print(rs_fxn)
python write file
# Open a connection to the file
# 打开一个文件,读出里面的数据
with open('world_dev_ind.csv') as file:
# Skip the column names
file.readline()
# Initialize an empty dictionary: counts_dict
counts_dict = {}
# Process only the first 1000 rows
for j in range(0,1000):
# Split the current line into a list: line
line = file.readline().split(',')
# Get the value for the first column: first_col
first_col = line[0]
# If the column value is in the dict, increment its value
if first_col in counts_dict.keys():
counts_dict[first_col] += 1
# Else, add to the dict and set value to 1
else:
counts_dict[first_col] = 1
# Print the resulting dictionary
print(counts_dict)
自定义一个绘图函数
# Define plot_pop()
def plot_pop(filename, country_code):
# Initialize reader object: urb_pop_reader
urb_pop_reader = pd.read_csv(filename, chunksize=1000)
# Initialize empty DataFrame: data
data = pd.DataFrame()
# Iterate over each DataFrame chunk
for df_urb_pop in urb_pop_reader:
# Check out specific country: df_pop_ceb
df_pop_ceb = df_urb_pop[df_urb_pop['CountryCode'] == country_code]
# Zip DataFrame columns of interest: pops
pops = zip(df_pop_ceb['Total Population'],
df_pop_ceb['Urban population (% of total)'])
# Turn zip object into list: pops_list
pops_list = list(pops)
# Use list comprehension to create new DataFrame column 'Total Urban Population'
df_pop_ceb['Total Urban Population'] = [int(tup[0] * tup[1] * 0.01) for tup in pops_list]
# Append DataFrame chunk to data: data
data = data.append(df_pop_ceb)
# Plot urban population data
data.plot(kind='scatter', x='Year', y='Total Urban Population')
plt.show()
# Set the filename: fn
fn = 'ind_pop_data.csv'
# Call plot_pop for country code 'CEB'
plot_pop(fn,'CEB')
# Call plot_pop for country code 'ARB'
plot_pop(fn,'ARB')
python list comprehensions的更多相关文章
- 每天学点Python之comprehensions
每天学点Python之comprehensions 推导式能够简化对数据的处理,让代码简洁的同一时候还具有非常高的可读性.这在Python中非经常见. 列表推导式 通过列表推导式能够对列表中的全部元素 ...
- [翻译]Python List Comprehensions: Explained Visually || Python列表解析式
原文1地址: http://treyhunner.com/2015/12/python-list-comprehensions-now-in-color/ 原文2地址: http://blog.tea ...
- CS224N Assignment1 Section 1
运行环境需求 # All Import Statements Defined Here # Note: Do not add to this list. # All the dependencies ...
- [NLP] cs224n-2019 Assignment 1 Exploring Word Vectors
CS224N Assignment 1: Exploring Word Vectors (25 Points)¶ Welcome to CS224n! Before you start, make ...
- Python基础知识--Slice(切片)和Comprehensions(生成式)
最近在Youtube的Python视频教程上学习Python相关的基础知识,视频由Corey Schafer制作,讲得十分简单明了,英文发音也比较清晰,几乎都能听懂,是一个不错的Python入门学习的 ...
- Python中的Comprehensions和Generations
Python中的Comprehensions和Generations语法都是用来迭代的.Comprehensions语法可用于list,set,dictionary上,而Generations语法分为 ...
- [Python's] Python's list comprehensions a
# Python's list comprehensions are awesome. vals = [expression for value in collection if condition] ...
- [Python] 字典推导 PEP 274 -- Dict Comprehensions
之前自己也遇到过一次,这段时间在群里也遇到过几次的一个问题 用python2.7写的一段程序.里面用到了字典推导式,可是server版本号是python2.6,无法执行. 今天查了下关于Dict Co ...
- Python高级特性——列表生成式(list Comprehensions)
List Comprehensions 即列表生成式,是Python内置的强大的用来生成列表list的生成式. 简单菜: >>> l = list(range(2,13)) > ...
随机推荐
- 并发编程之Master-Worker模式
我们知道,单个线程计算是串行的,只有等上一个任务结束之后,才能执行下一个任务,所以执行效率是比较低的. 那么,如果用多线程执行任务,就可以在单位时间内执行更多的任务,而Master-Worker就是多 ...
- VFP 图形文件与剪切板互换的API解决方法
在 VFP 中,凡遇图形处理,大多数情况下,都会涉及到图形文件与剪切板互换的情况.下面给出利用 API 解决的方法.这是原来从网上摘下来的,版权归原作者.基本处理的代码如下,你可以将其应用到你的代码中 ...
- 数据算法 --hadoop/spark数据处理技巧 --(5.移动平均 6. 数据挖掘之购物篮分析MBA)
五.移动平均 多个连续周期的时间序列数据平均值(按相同时间间隔得到的观察值,如每小时一次或每天一次)称为移动平均.之所以称之为移动,是因为随着新的时间序列数据的到来,要不断重新计算这个平均值,由于会删 ...
- Linux的那些事-系统启动(增加开机启动项)
1 /etc/init.d 2 /etc/inittab 3 /etc/rc.d/init.d 1. /etc/init.d 是一般开机的启动服务存放在这个目录下,至于实现机制,其实 ...
- clr via c# clr寄宿和AppDomain (一)
1 clr寄宿-----.net framework在windows平台的顶部允许.者意味着.net framework必须用windows能理解的技术来构建.所有托管模块和程序集文件必须使用wind ...
- UI自动化技术在高德的实践
一.背景汽车导航作为ToB业务,需要满足不同汽车厂商在功能和风格上体现各自特色的需求.针对这种情况,传统的UI开发方式,基本上是一对一的特别定制.但是这种方式动辄就要500~600人日的工作量投入,成 ...
- JavaScript之if流程控制演练,if写在区间内怎么解决
什么是编程?通俗意见上来讲,就是把人的思维与步骤通过代码的形式书写展示出来,JavaScript的流程控制包含条件判断if,switch选择,循环for while:if(表达式 条件)=>真{ ...
- 如何在IDEA的maven项目中连接并使用MySQL8.0
首先看一下我的基本的开发环境: 操作系统:MacOS 10.13.5 编辑器:IDEA 2018.3 其他:MySQL8.0.15.Maven 3.3.9.JDK 1.8 好,下面就正式开始: 第一步 ...
- Oracle的overlaps函数转换其他数据库语法
首先,来介绍一下Oracle的overlaps函数的用法: overlaps函数是用来判断两个时间段是否有重叠的 比如说计算 (a,b),(c,d) 就可以写成: select * from dual ...
- Markdown语法,及其在typora中的快捷键,学写博客吧!!!
前言 Markdown (MD) 是现在最流行的一种文档书写语言格式.平常写笔记,写博客,写计划再好不过了.个人觉得使用很简单,右击鼠标,有你想要的操作. Typora是简洁.操作简单.功能强大.方便 ...