Fractal Streets
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 445   Accepted: 162

Description

With a growing desire for modernization in our increasingly larger cities comes a need for new street designs. Chris is one of the unfortunate city planners responsible for these designs. Each year the demands keep increasing, and this year he has even been asked to design a completely new city.
More work is not something Chris needs right now, since like any
good bureaucrat, he is extremely lazy. Given that this is a character
trait he has in common with most computer scientists it should come as
no surprise that one of his closest friends, Paul, is in fact a computer
scientist. And it was Paul who suggested the brilliant idea that has
made Chris a hero among his peers: Fractal Streets! By using a Hilbert
curve, he can easily fill in rectangular plots of arbitrary size with
very little work.

A Hilbert curve of order 1 consists of one "cup". In a Hilbert curve
of order 2 that cup is replaced by four smaller but identical cups and
three connecting roads. In a Hilbert curve of order 3 those four cups
are in turn replaced by four identical but still smaller cups and three
connecting roads, etc. At each corner of a cup a driveway (with mailbox)
is placed for a house, with a simple successive numbering. The house in
the top left corner has number 1, and the distance between two adjacent
houses is 10m.

The situation is shown graphically in figure 2. As you can see the
Fractal Streets concept successfully eliminates the need for boring
street grids, while still requiring very little effort from our
bureaucrats.

As a token of their gratitude, several mayors have offered Chris a
house in one of the many new neighborhoods built with his own new
scheme. Chris would now like to know which of these offerings will get
him a house closest to the local city planning office (of course each of
these new neighborhoods has one). Luckily he will not have to actually
drive along the street, because his new company "car" is one of those
new flying cars. This high-tech vehicle allows him to travel in a
straight line from his driveway to the driveway of his new office. Can
you write a program to determine the distance he will have to fly for
each offier (excluding the vertical distance at takeoff and landing)?

Input

On the first line of the input is a positive integer, the number of test cases. Then for each test case:

A line containing a three positive integers, n < 16 and h, o < 231, specifying the order of the Hilbert curve, and the house numbers of the offered house and the local city planning office.

Output

For each test case:

One line containing the distance Chris will have to fly to his work in meters, rounded to the nearest integer.

Sample Input

3
1 1 2
2 16 1
3 4 33

Sample Output

10
30
50

Source

 
丁队长告诉我们,心情不好的时候就要做做这种题
 
李煜东题解(侵删):
š关键是要解决calc(N,P,M) :求编号为M的房屋在旋转P度的N级城市中的位置(P=0,90,180或270,逆时针为正方向)。本题就是求calc(N,0,S)与calc(N,0,D)的距离。
š记一个旋转P度的N级城市为city(N,P)。当N>1时,该城市由四部分组成,左上是city(N-1,P-90),左下是city(N-1,P+90),右上和右下是city(N-1,P)。
š已知N与P后很容易算出该城市道路依次经过其四个部分的顺序,通过M在1~22N四等分的大小位置可以确定M位于哪一部分(记为P’)。把之前经过的几个部分的房屋数量从M中减去(记为M’),然后递归求解calc(N-1,P’,M’)即可。
 
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath> inline void read(long long &x)
{
x = ;char ch = getchar(),c = ch;
while(ch < '' || ch > '')c = ch, ch = getchar();
while(ch <= '' && ch >= '')x = x * + ch - '', ch = getchar();
if(c == '-')x = -x;
} const long long INF = 0x3f3f3f3f; long long t, N, S, D, pow4[], pow2[]; struct Node
{
long long x, y;
Node(long long _x, long long _y){x = _x,y = _y;}
Node(){}
}; //求解编号为m的房子,在逆时针旋转p度后的n级城市中的坐标
//p只能取值0,90,270
//90,270编号反转,0不变 Node cal(long long n, long long p, long long m)
{
if(n == )
{
if(p == )
{
if(m == )return Node(,);
else if(m == ) return Node(,);
else if(m == ) return Node(,);
else return Node(,);
}
else if(p == )
{
if(m == )return Node(,);
else if(m == ) return Node(,);
else if(m == ) return Node(,);
else return Node(,);
}
else if(p == )
{
if(m == )return Node(,);
else if(m == ) return Node(,);
else if(m == ) return Node(,);
else return Node(,);
}
else if(p == )
{
if(m == )return Node(,);
else if(m == ) return Node(,);
else if(m == ) return Node(,);
else return Node(,);
}
}
Node tmp;
long long a = pow4[n - ];
long long r = (m - ) / a + ;
if(p == )
{
if(r == ) tmp = cal(n - , , m);
else if(r == ) tmp = cal(n - , , m - a), tmp.y += pow2[n - ];
else if(r == ) tmp = cal(n - , , m - * a), tmp.x += pow2[n - ], tmp.y += pow2[n - ];
else tmp = cal(n - , , m - a * ), tmp.x += pow2[n - ];
}
else if(p == )
{
if(r == ) tmp = cal(n - , , m), tmp.x += pow2[n - ], tmp.y += pow2[n - ];
else if(r == ) tmp = cal(n - , , m - a), tmp.y += pow2[n - ];
else if(r == ) tmp = cal(n - , , m - a * );
else tmp = cal(n - , , m - a * ), tmp.x += pow2[n - ];
}
else if(p == )
{
if(r == ) tmp = cal(n - , , m);
else if(r == ) tmp = cal(n - , , m - a), tmp.x += pow2[n - ];
else if(r == ) tmp = cal(n - , , m - * a), tmp.x += pow2[n - ], tmp.y += pow2[n - ];
else tmp = cal(n - , , m - * a), tmp.y += pow2[n - ];
}
else if(p == )
{
if(r == ) tmp = cal(n - , , m), tmp.x += pow2[n - ], tmp.y += pow2[n - ];
else if(r == ) tmp = cal(n - , , m - a), tmp.x += pow2[n - ];
else if(r == ) tmp = cal(n - , , m - a * );
else tmp = cal(n - , , m - a * ), tmp.y += pow2[n - ];
}
return tmp;
} int main()
{
//freopen("data.txt", "r" ,stdin);
read(t);
pow4[] = , pow2[] = ;
for(register int i = ;i <= ;++ i) pow4[i] = (pow4[i - ] << ), pow2[i] = (pow2[i - ] << );
Node tmp1, tmp2;
for(;t;-- t)
{
read(N),read(S),read(D);
tmp1 = cal(N, , S);
tmp2 = cal(N, , D);
double len = sqrt((long long)abs(tmp1.x - tmp2.x) * abs(tmp1.x - tmp2.x) + (long long)abs(tmp1.y - tmp2.y) * abs(tmp1.y - tmp2.y)) * ;
printf("%lld\n", (long long)(len + 0.5));
}
return ;
}

POJ3889

POJ3889Fractal Streets的更多相关文章

  1. POJ 3889 Fractal Streets(逼近模拟)

    $ POJ~3889~Fractal~Streets $(模拟) $ solution: $ 这是一道淳朴的模拟题,最近发现这种题目总是可以用逼近法,就再来练练手吧. 首先对于每个编号我们可以用逼近法 ...

  2. Codeforces 1070J Streets and Avenues in Berhattan dp

    Streets and Avenues in Berhattan 我们首先能发现在最优情况下最多只有一种颜色会分别在行和列, 因为你把式子写出来是个二次函数, 在两端取极值. 然后我们就枚举哪个颜色会 ...

  3. One-Way Streets (oneway)

    One-Way Streets (oneway) 题目描述 Once upon a time there was a country with nn cities and mm bidirection ...

  4. poj3889 fractal streets

    分形街道 我干,这个毒瘤. 想起来就头痛. 首先看题就是一大难题...... 说一下题目大意吧. 每当n+1时,把n阶图复制为4份.2*2排好. 右边两个不动.左上顺时针旋转90°,左下逆时针旋转90 ...

  5. Luogu4652 CEOI2017 One-Way Streets 树上差分

    传送门 题意:给出$N$个点.$M$条无向边的图,现在你需要给它定向,并满足$Q$个条件:每个条件形如$(x_i,y_i)$,表示定向之后需要存在路径从$x_i$走向$y_i$.问每条边是否都有唯一定 ...

  6. CF 1070J Streets and Avenues in Berhattan

    DP的数组f其实开得不够大,应该开200000,但是它在cf上就是过了... 题意是把一堆字母分别分配到行和列. 分析一下,答案实际上只和n行中和m列中每种字母分配的个数有关.而且答案只和" ...

  7. bzoj2263: Pku3889 Fractal Streets

    给出两点编号,求如图所示的图中两点间欧氏距离*10取整 递归处理由编号求出坐标 #include<cstdio> #include<cmath> int T,n,s,t; vo ...

  8. 【刷题】LOJ 2480 「CEOI2017」One-Way Streets

    题目描述 给定一张 \(n\) 个点 \(m\) 条边的无向图,现在想要把这张图定向. 有 \(p\) 个限制条件,每个条件形如 \((xi,yi)\) ,表示在新的有向图当中,\(x_i\) 要能够 ...

  9. CodeForces 1070J Streets and Avenues in Berhattan 性质+动态规划

    题目大意: 你有$k$个数,分为$26$种 对于每个数,你可以选择选进$A$集合或者$B$集合或者不选 要求$A$集合中必须有$n$个数,$B$集合中必须有$m$个数 记第$i$种数在$A$集合中的个 ...

随机推荐

  1. Quota- Linux必学的60个命令

    1.作用 quota命令用来显示磁盘使用情况和限制情况,使用权限超级用户. 2.格式 quota [-g][-u][-v][-p] 用户名 组名 3.参数 -g:显示用户所在组的磁盘使用限制. -u: ...

  2. Odoo 新 API 概述

    __all__ = [ 'Environment', 'Meta', 'guess', 'noguess', 'model', 'multi', 'one', 'cr', 'cr_context', ...

  3. leetcode 75 Sorted Colors

    两种解法 1)记录0和1的个数 然后按照记录的个数将0和1重新放入原数组,剩下的补2 2)双指针left,right left表示0~left-1都为0,即i之前都为0 right表示right+1~ ...

  4. Android Studio && NDK开发

    Android Studio下载安装网址:http://www.android-studio.org/index.php/download/hisversion 在下载界面可以查看安装包内是否包含SD ...

  5. Java内功修炼系列一责任链模式

    在上一节的拦截器中提到,程序的设计者一般会用拦截器替替代动态代理,将动态代理的逻辑隐藏起来,而把拦截器接口提供给开发者,使开发者不需要关系动态代理的具体实现过程,但是有时候需要多个拦截器,而且拦截器之 ...

  6. hibernate一对多关系 在一方查询会获得重复数据,重复数量就是多端数据数量用@Fetch(FetchMode.SUBSELECT)解决

    先来看数据表 版块表只有两个数据 板块1是推荐,下边没有子栏目 板块2下边有14个子栏目 在1的一端来查询,发现结果有16条 也就是板块1+版块2+版块2和他的14个子集都列出来了,这明显不对 板块对 ...

  7. Django之数据库连接与建模

    Django数据库链接(这里以Mysql为例) 需要准备 Django1.10 pip install django==1.10 -i https://pypi.tuna.tsinghua.edu.c ...

  8. 在scrapy中利用Selector来提取数据

    1.创建对象 Selector类的实现位于scrapy.selector模块,创建Selector对象的时候,可以将页面的Html文档字符串传递给Selector构造器方法 2.选中数据 调用Sele ...

  9. webServices学习三(概念详解)

    WebService通过HTTP协议完成远程调用: (深入分析) WebService只采用HTTP POST方式传输数据,不使用GET方式; -- 握手,WSDL-get, 普通http post的 ...

  10. Leetcode551.Student Attendance Record I学生出勤记录1

    给定一个字符串来代表一个学生的出勤纪录,这个纪录仅包含以下三个字符: 'A' : Absent,缺勤 'L' : Late,迟到 'P' : Present,到场 如果一个学生的出勤纪录中不超过一个' ...