<题目链接>

注意:这可能也是一道模板题。

注意2:$p=998224352$

注意3:对于$100\%$的数据,$n\leq 5 \times 10^6$

这个题很启发思路,如果直接快速幂应该会T飞(不过还是看到卡常大师$997ms$过……)。

所以

法一:直接快速幂

复杂度:$\Theta(N \log p)$

不多说直接快速幂即可。

法二:神奇分块思路

由于询问比较多,我们考虑预处理。

假设我们处理到$k$.

我们在指数上化柿子。

有:

$$\large x^y=x^{y\, \mod\, k }\times x^{\left\lfloor\frac{y}{k}\right\rfloor \times k}$$

然后就可以$\Theta(1)$回答了

预处理是$\Theta(k+\frac{p}{k})$的

于是取$k=p^{\frac{1}{2}}+1$可以达到最优复杂度$\Theta(p^{\frac{1}{2}}+N)$($+1$是为了防止$\sqrt{p}$取整精度跪掉)

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath> using namespace std;
const int Mod = 998244352, Sqrt = 31596;
long long val[32000], van[32000], vd, qn;
int main() {
long long q;
scanf("%lld%lld", &vd, &qn);
val[0] = 1;
val[1] = vd % Mod;
for (int i = 2; i <= Sqrt; i++) val[i] = val[i - 1] * vd % Mod; // cout<<val[i]<<" ";
van[0] = 1;
van[1] = val[Sqrt];
for (int i = 2; i <= Sqrt; i++) van[i] = van[i - 1] * val[Sqrt] % Mod;
for (int i = 1; i <= qn; i++) {
scanf("%lld", &q);
// cout<<q%Sqrt<<" "<<q/Sqrt<<endl;
// cout<<val[q%Sqrt]<<" "<<van[q/Sqrt]<<endl;
printf("%lld ", val[q % Sqrt] * van[q / Sqrt] % Mod);
}
puts("");
}

不得不说格式化代码令人兴奋……

[LOJ#162]模板题-快速幂2的更多相关文章

  1. 洛谷 P1226 【模板】快速幂||取余运算

    题目链接 https://www.luogu.org/problemnew/show/P1226 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 ...

  2. [每日一题2020.06.15]P1226 【模板】快速幂取余运算

    我是题目 快速幂就是快速求 \(a^b\)的一种算法 快速幂 思想 : 比如我要求 \(6^9\) 首先将幂转化为二进制形式 : \[6^9 = 6^{1001} \tag{1} \] 可以得到 : ...

  3. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  4. 题解 P1226 【【模板】快速幂||取余运算】

    1.题目分析 原题 本题在于快速幂的使用,以及对long long的应用问题. 2.解题思路 快速幂 求幂常见用法: int pow(int a,int b) { int ans; for(int i ...

  5. 洛谷 P1226 【模板】快速幂||取余运算 题解

    Analysis 快速幂模板,注意在最后输出时也要取模. 快速幂模板 inline ll ksm(ll x,ll y) { ll ans=; ) { ) { ans*=x; ans%=k; } x*= ...

  6. P2220 [HAOI2012]容易题(快速幂)

    Describe 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值 ...

  7. P1226 【模板】快速幂||取余运算

    https://www.luogu.org/problemnew/show/P1226 模板题 直接上代码吧 #include<bits/stdc++.h> using namespace ...

  8. [模板] 数学基础:快速幂/乘/逆元/exGCD/(ex)CRT/(ex)Lucas定理

    方便复制 快速乘/幂 时间复杂度 \(O(\log n)\). ll nmod; //快速乘 ll qmul(ll a,ll b){ ll l=a*(b>>hb)%nmod*(1ll< ...

  9. 【模板】快速幂&取余运算

    输入\(b\),\(p\),\(k\)的值,求\(b^p mod k\)的值.其中\(b\),\(p\),\(k^2\)为长整型数. 1.普通做法 \(print\) \(pow(b,p)\)\(mo ...

随机推荐

  1. 各种版本mysql驱动包下载地址

    http://central.maven.org/maven2/mysql/mysql-connector-java/

  2. JAVA 设计的七大原则

    一.开闭原则 开闭原则(Open-Closed Principle, OCP)是指一个软件实体如类.模块和函数应该对 扩展开放,对修改关闭. 所谓的开闭,也正是对扩展和修改两个行为的一个原则.强调 的 ...

  3. 线程池_ThreadPool

    using System; using System.Collections.Generic; using System.Drawing; using System.Drawing.Imaging; ...

  4. centos一些故障解决方法

    1. vmware下虚拟机centos,root登录时候提示鉴定故障解决方法 - lippor - 博客园 https://www.cnblogs.com/lippor/p/5537931.html ...

  5. 标记excel中输入的重复数据

    首先选中需要标记重复的数据列 开始 -> 条件格式 -> 突出显示单元格规则 -> 重复值 选择相应的颜色即可 效果如下:

  6. PAT甲级——A1118 Birds in Forest【25】

    Some scientists took pictures of thousands of birds in a forest. Assume that all the birds appear in ...

  7. 图解 5 种 Join 连接及实战案例!(inner/ left/ right/ full/ cross)

    Join 连接在日常开发用得比较多,但大家都搞清楚了它们的使用区别吗??一文带你上车~~ 内连接 inner join 内连接是基于连接谓词将俩张表(如A和B)的列组合到一起产生新的结果表,在表中存在 ...

  8. USACO training course Checker Challenge N皇后 /// oj10125

    ...就是N皇后 输出前三种可能排序 输出所有可能排序的方法数 vis[0][i]为i点是否已用 vis[1][m+i]为i点副对角线是否已用  m+i 为从左至右第 m+i 条副对角线 vis[1] ...

  9. 基于jdk8的格式化时间方法

    背景 jdk8之前,java使用Date表示时间,在做时间的格式化时,通常使用SimpleDateFormat,但是SimpleDateFormat是非线程安全的,在写代码时通常要将之定义为局部变量或 ...

  10. 将近半个小时,把一小段简短的汇编代码写成了C语言代码

    我自己看,感觉好像一句一句翻译的,写得很是生硬,不如书上写的灵活 0040137E    8B7424 04       MOV ESI,DWORD PTR SS:[ESP+4]00401382    ...