<题目链接>

注意:这可能也是一道模板题。

注意2:$p=998224352$

注意3:对于$100\%$的数据,$n\leq 5 \times 10^6$

这个题很启发思路,如果直接快速幂应该会T飞(不过还是看到卡常大师$997ms$过……)。

所以

法一:直接快速幂

复杂度:$\Theta(N \log p)$

不多说直接快速幂即可。

法二:神奇分块思路

由于询问比较多,我们考虑预处理。

假设我们处理到$k$.

我们在指数上化柿子。

有:

$$\large x^y=x^{y\, \mod\, k }\times x^{\left\lfloor\frac{y}{k}\right\rfloor \times k}$$

然后就可以$\Theta(1)$回答了

预处理是$\Theta(k+\frac{p}{k})$的

于是取$k=p^{\frac{1}{2}}+1$可以达到最优复杂度$\Theta(p^{\frac{1}{2}}+N)$($+1$是为了防止$\sqrt{p}$取整精度跪掉)

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath> using namespace std;
const int Mod = 998244352, Sqrt = 31596;
long long val[32000], van[32000], vd, qn;
int main() {
long long q;
scanf("%lld%lld", &vd, &qn);
val[0] = 1;
val[1] = vd % Mod;
for (int i = 2; i <= Sqrt; i++) val[i] = val[i - 1] * vd % Mod; // cout<<val[i]<<" ";
van[0] = 1;
van[1] = val[Sqrt];
for (int i = 2; i <= Sqrt; i++) van[i] = van[i - 1] * val[Sqrt] % Mod;
for (int i = 1; i <= qn; i++) {
scanf("%lld", &q);
// cout<<q%Sqrt<<" "<<q/Sqrt<<endl;
// cout<<val[q%Sqrt]<<" "<<van[q/Sqrt]<<endl;
printf("%lld ", val[q % Sqrt] * van[q / Sqrt] % Mod);
}
puts("");
}

不得不说格式化代码令人兴奋……

[LOJ#162]模板题-快速幂2的更多相关文章

  1. 洛谷 P1226 【模板】快速幂||取余运算

    题目链接 https://www.luogu.org/problemnew/show/P1226 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 ...

  2. [每日一题2020.06.15]P1226 【模板】快速幂取余运算

    我是题目 快速幂就是快速求 \(a^b\)的一种算法 快速幂 思想 : 比如我要求 \(6^9\) 首先将幂转化为二进制形式 : \[6^9 = 6^{1001} \tag{1} \] 可以得到 : ...

  3. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

  4. 题解 P1226 【【模板】快速幂||取余运算】

    1.题目分析 原题 本题在于快速幂的使用,以及对long long的应用问题. 2.解题思路 快速幂 求幂常见用法: int pow(int a,int b) { int ans; for(int i ...

  5. 洛谷 P1226 【模板】快速幂||取余运算 题解

    Analysis 快速幂模板,注意在最后输出时也要取模. 快速幂模板 inline ll ksm(ll x,ll y) { ll ans=; ) { ) { ans*=x; ans%=k; } x*= ...

  6. P2220 [HAOI2012]容易题(快速幂)

    Describe 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值 ...

  7. P1226 【模板】快速幂||取余运算

    https://www.luogu.org/problemnew/show/P1226 模板题 直接上代码吧 #include<bits/stdc++.h> using namespace ...

  8. [模板] 数学基础:快速幂/乘/逆元/exGCD/(ex)CRT/(ex)Lucas定理

    方便复制 快速乘/幂 时间复杂度 \(O(\log n)\). ll nmod; //快速乘 ll qmul(ll a,ll b){ ll l=a*(b>>hb)%nmod*(1ll< ...

  9. 【模板】快速幂&取余运算

    输入\(b\),\(p\),\(k\)的值,求\(b^p mod k\)的值.其中\(b\),\(p\),\(k^2\)为长整型数. 1.普通做法 \(print\) \(pow(b,p)\)\(mo ...

随机推荐

  1. Could not open file ..\obj\sys.o: No such file or directory解决办法

    一.你的keil的安装路径以及系统用户名是否带中文字符以及一些特殊字符.二.环境变量的值存在中文或者特殊字符了,解决方法如下: 1.在C盘建立一个新的文件夹,命名为英文,如qcl2.右击"此 ...

  2. (转)Python成长之路【第九篇】:Python基础之面向对象

    一.三大编程范式 正本清源一:有人说,函数式编程就是用函数编程-->错误1 编程范式即编程的方法论,标识一种编程风格 大家学习了基本的Python语法后,大家就可以写Python代码了,然后每个 ...

  3. python元组与字典

    一.元组 1.元组的表达 (1,2,3,4) ('olive',123) ("python",) 创建元组: a=tuple((1,2,3,)) b=("python&q ...

  4. Office2016只安装三件套方法

    转载 Office2016只安装三件套方法(word,ppt,excel) 2019-03-01 23:30:03 Kellen5l 阅读数 11618更多 分类专栏: Office   版权声明:本 ...

  5. 2019-8-31-dotnet-通过-WMI-获取系统启动的服务

    title author date CreateTime categories dotnet 通过 WMI 获取系统启动的服务 lindexi 2019-08-31 16:55:59 +0800 20 ...

  6. Python全栈开发:web框架

    Web框架本质 众所周知,对于所有的Web应用,本质上其实就是一个socket服务端,用户的浏览器其实就是一个socket客户端. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 ...

  7. vue 简单留言本

    代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8 ...

  8. thinkphp 视图定义

    视图定义 视图通常是指数据库的视图,视图是一个虚拟表,其内容由查询定义.同真实的表一样,视图包含一系列带有名称的列和行数据.但是,视图并不在数据库中以存储的数据值集形式存在.行和列数据来自由定义视图的 ...

  9. 高斯消元+期望dp——light1151

    高斯消元弄了半天没弄对.. #include<bits/stdc++.h> using namespace std; #define maxn 205 #define eps 1e-8 d ...

  10. C++内存字节对齐规则

    为什么要进行内存对齐以及对齐规则 C/C++—— 内存字节对齐规则 C++内存字节对齐规则