高通量计算框架HTCondor(五)——分布计算
1. 正文
1.1. 任务描述文件
前文提到过,HTCondor是通过condor_submit命令将提交任务的,这个命令需要提供一个任务描述文件。这个任务描述文件详细描述了任务运行的需求情况,如下所示:
universe = vanilla
requirements = (Arch == "INTEL" || Arch == "X86_64") && (OpSys == "WINDOWS") && (Machine == "charlee-PC" || Machine == "DESKTOP-OVHV440")
executable = D:\Work\HTC\Work\bin\TaskProgram.exe
should_transfer_files = YES
when_to_transfer_output = on_exit
notification = complete
skip_filechecks = true
arguments = 0
initialdir = D:\Work\HTC\Work\0
transfer_input_files = input.txt
transfer_output_files = output.dat
output = $(CLUSTER)_$(PROCESS).out
log = $(CLUSTER)_$(PROCESS).log
error = $(CLUSTER)_$(PROCESS).error
queue
arguments = 1
initialdir = D:\Work\HTC\Work\1
transfer_input_files = input.txt
transfer_output_files = output.dat
output = $(CLUSTER)_$(PROCESS).out
log = $(CLUSTER)_$(PROCESS).log
error = $(CLUSTER)_$(PROCESS).error
queue
...
arguments = 15
initialdir = D:\Work\HTC\Work\15
transfer_input_files = input.txt
transfer_output_files = output.dat
output = $(CLUSTER)_$(PROCESS).out
log = $(CLUSTER)_$(PROCESS).log
error = $(CLUSTER)_$(PROCESS).error
queue
universe参数表示HTCondor的运行环境,默认为vanilla。vanilla提供的功能会少一些,但是使用也会较为方便。如果要使用一些高级的功能,可以使用standard环境,standard环境提供了断点和迁移的功能,不过需要一些额外的重链接操作生成特定的可执行程序。
requirements参数表示该一系列任务的需求。HTCondor采取了一种ClassAds匹配策略,每台计算机会一直在Pool中广播关于自己资源的Ad,通过这个参数,可以匹配该任务是否与该计算机适配。这里设置的意思是选择X86的Windows机器,且机器名称为"charlee-PC"或"DESKTOP-OVHV440"。使用"name == "slot1@USER-EHN3KRBP1V"的形式,甚至可以指定到某一核来运行。
executable也就是上一篇中实现的可执行程序。
should_transfer_files表示使用文件传输机制。文件传输机制也就是任务程序需要的数据,跟随任务程序一起发送到任务机中运行。如果不使用文件传输机制,就需要如NFS或AFS这样的共享文件系统。
when_to_transfer_output = on_exit表示当任务程序完成之后,会有输出的文件一起传送回本机。
接下来arguments开头queue结尾的代码描述了16组任务的详细描述。initialdir是初始化目录,也就是上一节中创建的每个分任务的目录。
transfer_input_files表示传送到任务机的文件。这个参数可以设置成具体的文件,目录,设置是可执行程序依赖的dll。注意发送到任务机后这些文件与执行任务文件在同一个目录中。
when_to_transfer_output表示发送回本机的文件。当任务程序运行完成后,会生成处理好的数据,可以通过这个参数将文件传送回本机。
output表示任务程序的输出文件,可以截获任务程序的stdout流。
log表示集群执行任务程序的状态,一般是HTCondor框架自动生成。
error表示任务程序的错误文件,可以截获任务程序的stderr流。
1.2. 提交任务
在命令提示符窗口中输入condor_submit指令:

可以看到成功提交后,返回了一个任务ID号。可以通过condor_q指令查看当前的任务队列状态:

ST这一列的I代表idle,也就是闲置的。这时由于任务刚提交上去,还来不及匹配任务机器或者没有更新状态,多刷新几次,可以看到这一栏会编程R,也就是Run,表示运行状态:

继续输入condor_status,查看当前计算机资源的情况。这时的状态刷新会更慢些,也可以多输入几次:


State表示资源占用情况,Claimed表示已占用,Claimed表示未占用。Activity表示当前的活动状态,Idle就是闲置,Busy表示繁忙。
通过以上指令,可以查看当前任务是否正常。等待直到condor_q中的任务队列为空,就说明当前所有的任务已经完成了。
1.3. 返回结果
根据任务描述文件,任务程序会返回一个输出数据output.dat已经相关的日志信息.log、.out、.error。任务完成后会回传到各自的初始化目录中:

.out是任务程序的stdout流,可以用来输出信息;.error是任务程序的stderr流,可以用来输出错误信息。在任务程序中输出信息和日志是必要的,可以第一事件排查是哪一段代码出问题。如果连这两个文件都没有,可以考虑是否是HTCondor的环境配置问题,或者任务描述文件是否出错。
.log是HTCondor的输出日志,可以用来参考。output.dat就是任务程序的输出数据了,当然这个数据因任务程序而异,任务程序输出什么,任务描述文件就返回对应的数据,当然也可以什么都不用返回。
在HTCondor任务程序计算的过程中,会把任务程序传送到对应的任务机器,也就是任务机器HTCondor安装目录的execute目录中,运行时会看到任务程序,以及传送过来的数据等:

当然,在运行完成后,这个execute目录就会自动清空。
至此,一个简单的分布式计算流程就算完成了。实际的运用当然没这么简单,但是总体的思路都是这样的:
拆分任务——提交任务——监视任务——任务完成——合并结果。
2. 相关
高通量计算框架HTCondor(五)——分布计算的更多相关文章
- 高通量计算框架HTCondor(一)——概述
目录 1. 正文 2. 目录 3. 参考 4. 相关 1. 正文 HTCondor是威斯康星大学麦迪逊分校构建的分布式计算软件和相关技术,用来处理高通量计算(High Throughput Compu ...
- 高通量计算框架HTCondor(四)——案例准备
目录 1. 正文 1.1. 任务划分 1.2. 任务程序 2. 相关 1. 正文 1.1. 任务划分 使用高通量计算第一步就是要针对密集运算任务做任务划分.将一个海量的.耗时的.耗资源的任务划分成合适 ...
- 高通量计算框架HTCondor(六)——拾遗
目录 1. 正文 1.1. 一些问题 1.2. 使用建议 2. 相关 1. 正文 1.1. 一些问题 如果真正要将HTCondor高通量计算产品化还需要很多工作要做,HTCondor并没有GUI界面, ...
- 高通量计算框架HTCondor(二)——环境配置
目录 1. 概述 2. 安装 3. 结果 4. 相关 1. 概述 HTCondor是开源跨平台的分布式计算框架,在其官网上直接提供了源代码和Windows.Linux以及MacOS的安装包.因为平台限 ...
- 高通量计算框架HTCondor(三)——使用命令
目录 1. 目录 2. 进程 3. 命令 3.1. condor_q 3.2. condor_status 3.3. conodr_submit 3.4. conodr_rm 4. 相关 1. 目录 ...
- Vue.js-----轻量高效的MVVM框架(五、计算属性)
#基础例子 <div id="dr01"> <h4>#基础例子</h4> <div> num01={{num01}}, num02= ...
- (第4篇)hadoop之魂--mapreduce计算框架,让收集的数据产生价值
摘要: 通过前面的学习,大家已经了解了HDFS文件系统.有了数据,下一步就要分析计算这些数据,产生价值.接下来我们介绍Mapreduce计算框架,学习数据是怎样被利用的. 博主福利 给大家赠送一套ha ...
- 译 - 高可用的mesos计算框架设计
原文地址 http://mesos.apache.org/documentation/latest/high-availability-framework-guide/ 阅读建议:有写过或者看过Mes ...
- 实时计算框架:Flink集群搭建与运行机制
一.Flink概述 1.基础简介 Flink是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算.Flink被设计在所有常见的集群环境中运行,以内存执行速度和任意规模来执行计算.主要特性包 ...
随机推荐
- HDU 1024 Max Sum Plus Plus (动态规划 最大M字段和)
Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...
- 前端css图片固定宽高问题
img需要宽高都固定时,图片往往会因此变形,此时可采用的方法有: 上述代码会使得图片居中,边缘部分不显示.这是在图片大小跟container大小差不多的情况下.如果图片很大的话,只显示中心部分是不行的 ...
- Git 删除大文件的方法
git 仓库中删除历史大文件 git 仓库中删除历史大文件 在git中增加了一个很大的文件,而且被保存在历史提交记录中,每次拉取代码都很大,速度很慢.而且用删除 提交历史记录的方式不是很实际. 以 ...
- freemarker<三>
前两篇博客介绍了freemaker是什么以及简单的语法规则,下面我们通过实现一个demo来看在实际应用中如何使用freemaker,本篇博客主要介绍freemaker与spring的整合. 需要的Ja ...
- 将 Sidecar 容器带入新的阶段
作者 | 徐迪.张晓宇 导读:本文根据徐迪和张晓宇在 KubeCon NA 2019 大会分享整理.分享将会从以下几个方面进行切入:首先会简单介绍一下什么是 Sidecar 容器:其次,会分享几个阿里 ...
- javeweb_学生信息添加系统
在text.jsp中画出界面,以及设置提交选项的限制 <%@ page language="java" contentType="text/html; charse ...
- nginx部署vue跨域proxy方式
server { listen 80; charset utf-8; #server_name localhost; server_name you_h5_name; ###VUE项目H5域名 err ...
- $loj$10222 佳佳的$Fibonacci$ 矩阵快速幂
正解:矩阵快速幂 解题报告: 我永远喜欢loj! 一看到这个就应该能想到矩阵快速幂? 然后就考虑转移式,发现好像直接想不好想,,,主要的问题在于这个*$i$,就很不好搞$QAQ$ 其实不难想到,$\s ...
- java之set接口
1.set集合不能存储重复的元素, 2.HashSet集合不能保证的迭代顺序与元素存储顺序相同. 3.HashSet集合,采用哈希表结构存储数据,保证元素唯一性的方式依赖于:hashCode()与eq ...
- “Deep models under the GAN: information leakage from collaborative deep learning”阅读笔记
一.摘要 指出深度学习在机器学习场景下的优势,以及深度学习快速崛起的原因.随后点出研究者对于深度学习隐私问题的考虑.作者提出了一种强力的攻击方法,在其攻击下任何分布式.联邦式.或者中心化的深度学习方法 ...