@desription@

给定一个序列 a,定义它的权值 \(c = \sum_{i=1}^{n}a_i\)。

你可以做如下的操作恰好一次:选择一个数,然后将它移动到一个位置(可以是原位置,序列开头与结尾)。

最大化序列权值。

input

第 1 行一个整数 n,表示序列长度(2 <= n <= 200000)。

第 2行 n 个整数 a1, a2, ..., an,表示这个序列(|ai| <= 1000000)。

output

输出一个整数,表示最大的序列权值。

sample input

4

4 3 2 5

sample output

39

sample explain

将 4 移动到 5 之前,得到 \(c = 1*3 + 2*2 + 3*4 + 4*5 = 39\)。

@solution@

移动可以向前移动也可以向后移动,我们仅考虑向后这一种,向前同理。

记原序列权值为 \(c\),再记 \(s[i]=\sum_{p=1}^{i}a_p\)。

考虑将第 i 号元素移动到第 j 个位置,则新序列权值为:

\[c'=c-a[i]*i+a[i]*j+(s[j]-s[i])
\]

你看,它多么的斜率优化。

求最大值是上凸包,横坐标为 \(-j\),从后往前是单增的。

但是……斜率为 \(a[i]\),是不单调的。

所以我们必须在凸包上作二分寻找答案。

一开始我很懵逼,凸包不应该是三分求极值吗?后来我才发现,二分原来是二分斜率。凸包上斜率是单增的,所以可以使用二分。(但是三分好像也可以……只是大概没人想写而已……明明三分更容易调错来着 qwq)。

二分找什么呢?就是找到一个点,它和它前驱的斜率大于等于 \(a[i]\),它和它后继的斜率小于等于 \(a[i]\)。

注意二分常见的错误:边界。

@accepted code@

#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
const int MAXN = 200000;
int n;
ll a[MAXN + 5], s1[MAXN + 5], s2[MAXN + 5];
ll c1(int i) {return s1[n] - a[i]*i + s2[i-1];}
ll c2(int i) {return s1[n] - a[i]*i + s2[i];}
ll k1(int i) {return -a[i];}
ll k2(int i) {return a[i];}
ll x1(int j) {return j;}
ll x2(int j) {return -j;}
ll y1(int j) {return -s2[j-1];}
ll y2(int j) {return -s2[j];}
int stk[MAXN + 5], tp;
double slope1(int p, int q) {return 1.0*(y1(p) - y1(q))/(x1(p) - x1(q));}
double slope2(int p, int q) {return 1.0*(y2(p) - y2(q))/(x2(p) - x2(q));}
int main() {
scanf("%d", &n);
for(int i=1;i<=n;i++)
scanf("%lld", &a[i]);
for(int i=1;i<=n;i++) {
s1[i] = s1[i-1] + a[i]*i;
s2[i] = s2[i-1] + a[i];
}
ll ans = -(1LL<<62); tp = 0;
for(int i=1;i<=n;i++) {
while( tp > 1 && slope1(stk[tp - 1], stk[tp]) <= slope1(stk[tp], i) )
tp--;
stk[++tp] = i;
int le = 1, ri = tp;
while( le < ri ) {
int mid = (le + ri) >> 1;
if( slope1(stk[mid], stk[mid+1]) <= k1(i) ) ri = mid;
else le = mid + 1;
}
ans = max(ans, c1(i) + y1(stk[le]) - k1(i)*x1(stk[le]));
}
tp = 0;
for(int i=n;i>=1;i--) {
while( tp > 1 && slope2(stk[tp - 1], stk[tp]) <= slope2(stk[tp], i) )
tp--;
stk[++tp] = i;
int le = 1, ri = tp;
while( le < ri ) {
int mid = (le + ri) >> 1;
if( slope2(stk[mid], stk[mid+1]) <= k2(i) ) ri = mid;
else le = mid + 1;
}
ans = max(ans, c2(i) + y2(stk[le]) - k2(i)*x2(stk[le]));
}
printf("%lld\n", ans);
}

@details@

一开始我从前往后和从后往前都用同一个横坐标,然后因为枚举顺序不一样,导致一个是单增的一个是单减的。

单增的还好,单减的那个让我二分时各种边界错误……调到死都调不出来……

最后索性把单减那个横坐标取个相反数,变成单增的。然后一遍过 =_=。

@codeforces - 631E@ Product Sum的更多相关文章

  1. Codeforces 631E Product Sum 斜率优化

    我们先把问题分成两部分, 一部分是把元素往前移, 另一部分是把元素往后移.对于一个 i 后的一个位置, 我们考虑前面哪个移到这里来最优. 我们设最优值为val,   val = max(a[ j ] ...

  2. Codeforces Round #344 (Div. 2) E. Product Sum 维护凸壳

    E. Product Sum 题目连接: http://www.codeforces.com/contest/631/problem/E Description Blake is the boss o ...

  3. Codeforces Round #344 (Div. 2) E. Product Sum 二分斜率优化DP

    E. Product Sum   Blake is the boss of Kris, however, this doesn't spoil their friendship. They often ...

  4. Codeforces 396B On Sum of Fractions 数论

    题目链接:Codeforces 396B On Sum of Fractions 题解来自:http://blog.csdn.net/keshuai19940722/article/details/2 ...

  5. [codeforces631E]Product Sum

    E. Product Sum time limit per test: 1 second memory limit per test: 256 megabytes input:standard inp ...

  6. codeforces 963A Alternating Sum

    codeforces 963A Alternating Sum 题解 计算前 \(k\) 项的和,每 \(k\) 项的和是一个长度为 \((n+1)/k\) ,公比为 \((a^{-1}b)^k\) ...

  7. codeforces 1217E E. Sum Queries? (线段树

    codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...

  8. Codeforces 577B Modulo Sum

    http://codeforces.com/problemset/problem/577/B 题意:有n个数,求有无一个子序列满足和是m的倍数 思路:用模下的背包做,发现n是十的六次方级别,但是有个神 ...

  9. Codeforces 85 D. Sum of Medians

    题目链接:http://codeforces.com/contest/85/problem/D 做法果然男默女泪啊..... 大概就是直接开了一个$vector$每次插入删除都用自带的$insert$ ...

随机推荐

  1. Cf序列化器-Serializer解析

    Cf序列化器-Serializer 定义序列化器 Django REST framework中的Serializer使用类来定义,须继承自rest_framework.serializers.Seri ...

  2. SQLyog12.0.9下载、安装和破解

    原文转载连接:https://blog.csdn.net/lihua5419/article/details/73881837/ sqlyog百度云链接(永久有效):http://pan.baidu. ...

  3. 简单几招助您加速 ARM 容器应用开发和测试流程

    随着5G时代的临近,低延迟网络.AI硬件算力提升.和智能化应用快速发展,一个万物智联的时代必将到来.我们需要将智能决策.实时处理能力从云延展到边缘和IoT设备端.阿里云容器服务推出了边缘容器,支持云- ...

  4. Calendar to julian date format

    1.JULIAN DATE 定义 2.示例: 定义枚举: public enum JulianDateType    {        /// <summary>        /// J ...

  5. ML面试1000题系列(31-40)

    本文总结ML面试常见的问题集 转载来源:https://blog.csdn.net/v_july_v/article/details/78121924 31.下列哪个不属于CRF模型对于HMM和MEM ...

  6. NodeJS概述2-事件插件-简易爬虫

    事件 events 模块 原生事件写法 /* * 1. 事件分类 * DOM0级 事件 - on + eventType * DOM2级 事件 - 事件监听 * 2. 事件构成部分有哪些? dom.o ...

  7. 蚁群算法MATLAB解VRP问题

    Excel  exp12_3_2.xls内容: ANT_VRP函数: function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ANT ...

  8. 模拟退火解TSP问题MATLAB代码

    分别把前四个函数存成m文件,再运行最后一个. swap.m function [ newpath , position ] = swap( oldpath , number ) % 对 oldpath ...

  9. mybatis-plus思维导图,让mybatis-plus不再难懂

    mybatis-plus与mybatis mybatis Mybatis 是一款优秀的持久层框架,它支持定制化 SQL.存储过程以及高级映射.MyBatis 避免了几乎所有的 JDBC 代码和手动设置 ...

  10. Leetcode766.Toeplitz Matrix托普利茨矩阵

    如果一个矩阵的每一方向由左上到右下的对角线上具有相同元素,那么这个矩阵是托普利茨矩阵. 给定一个 M x N 的矩阵,当且仅当它是托普利茨矩阵时返回 True. 示例 1: 输入: matrix = ...