@codeforces - 631E@ Product Sum
@desription@
给定一个序列 a,定义它的权值 \(c = \sum_{i=1}^{n}a_i\)。
你可以做如下的操作恰好一次:选择一个数,然后将它移动到一个位置(可以是原位置,序列开头与结尾)。
最大化序列权值。
input
第 1 行一个整数 n,表示序列长度(2 <= n <= 200000)。
第 2行 n 个整数 a1, a2, ..., an,表示这个序列(|ai| <= 1000000)。
output
输出一个整数,表示最大的序列权值。
sample input
4
4 3 2 5
sample output
39
sample explain
将 4 移动到 5 之前,得到 \(c = 1*3 + 2*2 + 3*4 + 4*5 = 39\)。

@solution@
移动可以向前移动也可以向后移动,我们仅考虑向后这一种,向前同理。
记原序列权值为 \(c\),再记 \(s[i]=\sum_{p=1}^{i}a_p\)。
考虑将第 i 号元素移动到第 j 个位置,则新序列权值为:
\]
你看,它多么的斜率优化。
求最大值是上凸包,横坐标为 \(-j\),从后往前是单增的。
但是……斜率为 \(a[i]\),是不单调的。
所以我们必须在凸包上作二分寻找答案。
一开始我很懵逼,凸包不应该是三分求极值吗?后来我才发现,二分原来是二分斜率。凸包上斜率是单增的,所以可以使用二分。(但是三分好像也可以……只是大概没人想写而已……明明三分更容易调错来着 qwq)。
二分找什么呢?就是找到一个点,它和它前驱的斜率大于等于 \(a[i]\),它和它后继的斜率小于等于 \(a[i]\)。
注意二分常见的错误:边界。
@accepted code@
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
const int MAXN = 200000;
int n;
ll a[MAXN + 5], s1[MAXN + 5], s2[MAXN + 5];
ll c1(int i) {return s1[n] - a[i]*i + s2[i-1];}
ll c2(int i) {return s1[n] - a[i]*i + s2[i];}
ll k1(int i) {return -a[i];}
ll k2(int i) {return a[i];}
ll x1(int j) {return j;}
ll x2(int j) {return -j;}
ll y1(int j) {return -s2[j-1];}
ll y2(int j) {return -s2[j];}
int stk[MAXN + 5], tp;
double slope1(int p, int q) {return 1.0*(y1(p) - y1(q))/(x1(p) - x1(q));}
double slope2(int p, int q) {return 1.0*(y2(p) - y2(q))/(x2(p) - x2(q));}
int main() {
scanf("%d", &n);
for(int i=1;i<=n;i++)
scanf("%lld", &a[i]);
for(int i=1;i<=n;i++) {
s1[i] = s1[i-1] + a[i]*i;
s2[i] = s2[i-1] + a[i];
}
ll ans = -(1LL<<62); tp = 0;
for(int i=1;i<=n;i++) {
while( tp > 1 && slope1(stk[tp - 1], stk[tp]) <= slope1(stk[tp], i) )
tp--;
stk[++tp] = i;
int le = 1, ri = tp;
while( le < ri ) {
int mid = (le + ri) >> 1;
if( slope1(stk[mid], stk[mid+1]) <= k1(i) ) ri = mid;
else le = mid + 1;
}
ans = max(ans, c1(i) + y1(stk[le]) - k1(i)*x1(stk[le]));
}
tp = 0;
for(int i=n;i>=1;i--) {
while( tp > 1 && slope2(stk[tp - 1], stk[tp]) <= slope2(stk[tp], i) )
tp--;
stk[++tp] = i;
int le = 1, ri = tp;
while( le < ri ) {
int mid = (le + ri) >> 1;
if( slope2(stk[mid], stk[mid+1]) <= k2(i) ) ri = mid;
else le = mid + 1;
}
ans = max(ans, c2(i) + y2(stk[le]) - k2(i)*x2(stk[le]));
}
printf("%lld\n", ans);
}
@details@
一开始我从前往后和从后往前都用同一个横坐标,然后因为枚举顺序不一样,导致一个是单增的一个是单减的。
单增的还好,单减的那个让我二分时各种边界错误……调到死都调不出来……
最后索性把单减那个横坐标取个相反数,变成单增的。然后一遍过 =_=。
@codeforces - 631E@ Product Sum的更多相关文章
- Codeforces 631E Product Sum 斜率优化
我们先把问题分成两部分, 一部分是把元素往前移, 另一部分是把元素往后移.对于一个 i 后的一个位置, 我们考虑前面哪个移到这里来最优. 我们设最优值为val, val = max(a[ j ] ...
- Codeforces Round #344 (Div. 2) E. Product Sum 维护凸壳
E. Product Sum 题目连接: http://www.codeforces.com/contest/631/problem/E Description Blake is the boss o ...
- Codeforces Round #344 (Div. 2) E. Product Sum 二分斜率优化DP
E. Product Sum Blake is the boss of Kris, however, this doesn't spoil their friendship. They often ...
- Codeforces 396B On Sum of Fractions 数论
题目链接:Codeforces 396B On Sum of Fractions 题解来自:http://blog.csdn.net/keshuai19940722/article/details/2 ...
- [codeforces631E]Product Sum
E. Product Sum time limit per test: 1 second memory limit per test: 256 megabytes input:standard inp ...
- codeforces 963A Alternating Sum
codeforces 963A Alternating Sum 题解 计算前 \(k\) 项的和,每 \(k\) 项的和是一个长度为 \((n+1)/k\) ,公比为 \((a^{-1}b)^k\) ...
- codeforces 1217E E. Sum Queries? (线段树
codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...
- Codeforces 577B Modulo Sum
http://codeforces.com/problemset/problem/577/B 题意:有n个数,求有无一个子序列满足和是m的倍数 思路:用模下的背包做,发现n是十的六次方级别,但是有个神 ...
- Codeforces 85 D. Sum of Medians
题目链接:http://codeforces.com/contest/85/problem/D 做法果然男默女泪啊..... 大概就是直接开了一个$vector$每次插入删除都用自带的$insert$ ...
随机推荐
- LintCode_415 有效回文串
给定一个字符串,判断其是否为一个回文串.只包含字母和数字,忽略大小写. 注意事项 你是否考虑过,字符串有可能是空字符串?这是面试过程中,面试官常常会问的问题. 在这个题目中,我们将空字符串判定为有效回 ...
- Intent 传递Map数据
android开发默认情况下,通过Bundle bundle=new Bundle();传递值是不能直接传递map对象的,解决办法: 第一步:封装自己的map,实现序列化即可 /** *序列化map供 ...
- flask的基本操作
常用的SQLAlchemy字段类型 # coding:utf-8 from flask import Flask from flask_sqlalchemy import SQLAlchemy app ...
- ES6中async和await说明和用法
昨天看了一篇vue的教程,作者用async/ await来发送异步请求,从服务端获取数据,代码很简洁,同时async/await 已经被标准化,是时候学习一下了. 先说一下async的用法,它作为一个 ...
- Xcode8遇到的问题及解决方案!!!
http://blog.csdn.net/jnbbwyth/article/details/52576169 http://www.cocoachina.com/ios/20161227/18451. ...
- NIOP模拟17.10.13
太水,简述一下题意 T1 让你计算一个形如Σai * bi^ki 快速幂即可 #include <iostream> #include <cstdio> #include &l ...
- Leetcode78. Subsets子集
给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: nums = [1,2,3] 输出: [ [3], [1], [2 ...
- tp5.1 本地正常, 线上route.php不起作用的问题
由于本项目 的.htaccess文件是放在根目录的, 上传没有覆盖,重新编辑 <IfModule mod_rewrite.c> Options +FollowSymlinks -Multi ...
- SAE J2534介绍
概要 J2534是一种针对与射频相关的ECU进行闪存编程的概念,而不用考虑ECU使用的通信协议.其目的是所有类型的ECU都应当只需一个工具(硬件设备),通常被称为通过式设备.J2534设备和ECU之间 ...
- Devexpress 中控件及GridView控件的Cell增加右键复制功能
a) GridView中任何一个Cell增加右键复制功能GridHitInfo gridHitInfo = new GridHitInfo(); //用户接收GridView中单元格数据void gr ...