poj 1274 The Perfact Stall
***The Perfect Stall***
Description
Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering problems, all the stalls in the new barn are different. For the first week, Farmer John randomly assigned cows to stalls, but it quickly became clear that any given cow was only willing to produce milk in certain stalls. For the last week, Farmer John has been collecting data on which cows are willing to produce milk in which stalls. A stall may be only assigned to one cow, and, of course, a cow may be only assigned to one stall.
Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible.
Input
The input includes several cases. For each case, the first line contains two integers, N (0 <= N <= 200) and M (0 <= M <= 200). N is the number of cows that Farmer John has and M is the number of stalls in the new barn. Each of the following N lines corresponds to a single cow. The first integer (Si) on the line is the number of stalls that the cow is willing to produce milk in (0 <= Si <= M). The subsequent Si integers on that line are the stalls in which that cow is willing to produce milk. The stall numbers will be integers in the range (1..M), and no stall will be listed twice for a given cow.
Output
For each case, output a single line with a single integer, the maximum number of milk-producing stall assignments that can be made.
Sample Input
5 5
2 2 5
3 2 3 4
2 1 5
3 1 2 5
1 2
Sample Output
4
题目大意:一共同拥有n头牛,m面墙。每头牛有自己喜欢的墙,要求每堵墙仅仅能有一头牛,求最多的匹配数
解题思路:,题目要求最大的匹配数,也就是通过左边的点,从右边的点穿出。使得穿出的个数最多,每 个点仅仅能穿过一次,我们在图中加个源点和汇点即可了。
。。然后,有了源点和汇点。源点到左边每一个的流量都是 1,也就是仅仅能通过 1 次,汇点也相似,而左边的点到右 的点相应的边的边容量为 1,就这样,这道题成功转换为最大流问题。建图后最大流解决
详细看代码:
/*
Date : 2015-8-21 晚上
Author : ITAK
Motto :
今日的我要超越昨日的我。明日的我要胜过今日的我;
以创作出更好的代码为目标。不断地超越自己。
*/
#include <iostream>
#include <cstdio>
using namespace std;
///oo表示无穷大
const int oo = 1e9+5;
///mm表示边的最大数量。由于要双向建边
const int mm = 111111;
///点的最大数量
const int mn = 1000;
///node:节点数,src:源点,dest:汇点,edge:边数
int node, src, dest, edge;
///ver:边指向的结点,flow:边的流量,next:链表的下一条边
int ver[mm], flow[mm], next[mm];
///head:节点的链表头,work:用于算法中的暂时链表头,dis:距离
int head[mn], work[mn], dis[mn], q[mn];
///初始化
void Init(int _node, int _src, int _dest)
{
node = _node, src = _src, dest = _dest;
for(int i=0; i<node; i++)
head[i] = -1;
edge = 0;
}
///添加边
void addedge(int u, int v, int c)
{
ver[edge]=v,flow[edge]=c,next[edge]=head[u],head[u]=edge++;
ver[edge]=u,flow[edge]=0,next[edge]=head[v],head[v]=edge++;
}
///广搜计算出每一个点与源点的最短距离,假设不能到达汇点说明算法结束
bool Dinic_bfs()
{
int i, u, v, l, r = 0;
for(i=0; i<node; i++)
dis[i] = -1;
dis[q[r++]=src] = 0;
for(l=0; l<r; l++)
for(i=head[u=q[l]]; i>=0; i=next[i])
if(flow[i] && dis[v=ver[i]]<0)
{
///这条边必须有剩余流量
dis[q[r++]=v] = dis[u] + 1;
if(v == dest)
return 1;
}
return 0;
}
///寻找可行流的增广路算法。按节点的距离来找。加高速度
int Dinic_dfs(int u, int exp)
{
if(u == dest)
return exp;
///work 是暂时链表头,这里用 i 引用它,这样寻找过的边不再寻找*
for(int &i=work[u],v,tmp; i>=0; i=next[i])
{
if(flow[i]&&dis[v=ver[i]]==dis[u]+1&&(tmp=Dinic_dfs(v,min(exp,flow[i])))>0)
{
///正反向边容量改变
flow[i] -= tmp;
flow[i^1] += tmp;
return tmp;
}
}
return 0;
}
///求最大流。直到没有可行流
int Dinic_flow()
{
int i, ret=0, data;
while(Dinic_bfs())
{
for(i=0; i<node; i++)
work[i] = head[i];
while(data = Dinic_dfs(src, oo))
ret += data;//cout<<666<<endl;
}
return ret;
}
int main()
{
int n, m, u, v, c;
while(cin>>n>>m)
{
Init(n+m+2, 0, n+m+1);
for(u=1; u<=n; u++)
{
addedge(src, u, 1);
cin>>c;
while(c--)
{
cin>>v;
addedge(u, v+n, 1);
}
}
while(m)
addedge(n+m--, dest, 1);
cout<<Dinic_flow()<<endl;
}
return 0;
}
poj 1274 The Perfact Stall的更多相关文章
- Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配)
Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配) Description 农夫约翰上个 ...
- poj——1274 The Perfect Stall
poj——1274 The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 25709 A ...
- POJ 1274 The Perfect Stall || POJ 1469 COURSES(zoj 1140)二分图匹配
两题二分图匹配的题: 1.一个农民有n头牛和m个畜栏,对于每个畜栏,每头牛有不同喜好,有的想去,有的不想,对于给定的喜好表,你需要求出最大可以满足多少头牛的需求. 2.给你学生数和课程数,以及学生上的 ...
- POJ 1274 The Perfect Stall、HDU 2063 过山车(最大流做二分匹配)
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24081 Accepted: 106 ...
- [题解]poj 1274 The Prefect Stall
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 22736 Accepted: 10144 Description Far ...
- poj 1274 The Prefect Stall - 二分匹配
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 22736 Accepted: 10144 Description Far ...
- poj 1274 The Perfect Stall 解题报告
题目链接:http://poj.org/problem?id=1274 题目意思:有 n 头牛,m个stall,每头牛有它钟爱的一些stall,也就是几头牛有可能会钟爱同一个stall,问牛与 sta ...
- [题解]poj 1274 The Perfect Stall(网络流)
二分匹配传送门[here] 原题传送门[here] 题意大概说一下,就是有N头牛和M个牛棚,每头牛愿意住在一些牛棚,求最大能够满足多少头牛的要求. 很明显就是一道裸裸的二分图最大匹配,但是为了练练网络 ...
- [POJ] 1274 The Perfect Stall(二分图最大匹配)
题目地址:http://poj.org/problem?id=1274 把每个奶牛ci向它喜欢的畜栏vi连边建图.那么求最大安排数就变成求二分图最大匹配数. #include<cstdio> ...
随机推荐
- 如何在eclipse 中安装 spring IDE
1.先 确定 当前的eclipse 的版本:(步骤如下) 2.下载spring ide(请确定好ecplice 的版本号) http://spring.io/tools/sts/all 最后: 安装 ...
- Thinkphp图片水印和文字水印
1.Thinkphp图像处理 在TP框架中,我们经常用到图片上传,我最近写了很多关于图片上传的文章,thinkphp图片上传+validate表单验证+图片木马检测+缩略图生成等文章,今天写一下关于图 ...
- 对StackOverflow上投票最高的带javascript标签的问题的汇总
https://github.com/simongong/js-stackoverflow-highest-votes
- ARP扫描工具arp-scan
ARP扫描工具arp-scan arp-scan是Kali Linux自带的一款ARP扫描工具.该工具可以进行单一目标扫描,也可以进行批量扫描.批量扫描的时候,用户可以通过CIDR.地址范围或者列 ...
- VB查询数据库之结账——机房收费系统总结(五)
对于机房收费的结账,我感觉是所有窗体中,最难的一个.这个窗体我真的做了好多天.它的难度系数我感觉是最高的. 首先,你要理清上机时间和收费标准的关系,在预备时间中,是不收费的. 其次,在超过预备时间,一 ...
- CSS 笔记——背景布局
4. 背景布局 -> 背景 (1)background 基本语法 background : background-color || background-image || background- ...
- Codeforces #447 Div.2 Tutorial
Problem A:QAQ 给一个字符串,求出可非连续的QAQ序列有多少个. Analysis:比较水的一道题,记录每一个Q的位置,预处理A的个数即可 然而还是fst了,原因是未考虑一个Q都没有的极端 ...
- 【FFT(母函数)+容斥】BZOJ3771-Triple
[题目大意] 给出 n个物品,价值为别为Xi且各不相同,现在可以取1个.2个或3个,问每种价值和有几种情况? *顺序不同算一种 [思路] 显然是个母函数,A表示每种物品取一个的情况,B表示每种物品取二 ...
- java instanceof方法
基本用法 null instanceof Object 为false: null instanceof 任意类 为false:任意实例 instanceof 对应的类或者父类 都为true: 基本 ...
- ie8以下浏览器注意事项
ie8以下ajax请求或者socket请求时一定要加二级域名:(目的不能垮域访问)