[TJOI2013]最长上升子序列 平衡树
其实是一道性质题。
首先观察到插入的数是递增的,
那么根据上升子序列的性质,
我们的非法情况就是统计到了在一个数前面的后插入的数,
但是由于插入的数是递增的,显然插入这个数后,这个数就是最大的,所以除了它自己,不会有任何数统计到它,
也就是说,插入一个数时,因为它后面的数都比它小,所以不会对后面DP值产生影响,
而显然它也是不会对它前面的数产生影响的,
因此插入操作实质上是一种无效操作。
所以我们只需要得到最终序列,然后直接dp得到以每个数为结尾的最长上升子序列,
然后统计答案的时候按照数的大小输出前缀max即可。
#include<bits/stdc++.h>
#include<ext/rope>
using namespace std;
using namespace __gnu_cxx;
#define R register int
#define AC 110000
#define getchar() *o++
char READ[],*o=READ;
int n,tot,maxn;
int s[AC],d[AC],ans[AC];
rope <int> tmp;
/*这大概是一道很妙的观察性质题吧,,,
可以观察到,对于插入任意一个数而言,不管插在哪里,对它前面的DP值是不会产生影响的,
而由于插入的数是递增的,所以插入这个数时,这个数自己就是当前数列里最大的那一个,
所以对后面的DP值也不会产生影响,所以其实只需要得到最后的序列直接DP即可以了,因为插入是无效的。 换句话来说,就是因为直接对最后序列查询得到的是不合法结果,当且仅当这个数的DP值中利用到了
在这个数前面的,且在它后面插入的数。而对于这道题而言,在它后面插入的数都比它大,
所以插在前面肯定查询不到,而插在后面自然也查不到了,所以直接做就好了 那如何处理输出问题呢?
因为时间顺序就是数字大小,因此把每个位置的DP值放入对应的数字大小里,然后前缀取max就可以了
*/
inline int read()
{
int x=;char c=getchar();
while(c > '' || c < '') c=getchar();
while(c >= '' && c <= '') x=x*+c-'',c=getchar();
return x;
} void pre()
{
n=read();
for(R i=;i<=n;i++)
{
int a=read();
tmp.insert(a,i);
}
//printf("!!!");
for(R i=;i<=n;i++)
{
// printf("%d\n",i);
s[i]=tmp.at(i-);
// if(s[i] == 1) printf("!!!%d\n",i);
}
} void half(int x)
{
int l=,r=tot,mid;
while(l < r)
{
mid=(l + r) >> ;
if(d[mid] > x) r=mid;//因为这里直接转移是保护了信息的,因此寻找第一个大于x的数
else l=mid+;
}
d[l]=x;
ans[x]=l;
}
//这种二分所利用的单调性实质上是因为前面被放入的后面一定可以用?
void work()
{
//for(R i=1;i<=n;i++) printf("%d ",s[i]);
//printf("\n");
for(R i=;i<=n;i++)
{
if(s[i] > d[tot]) d[++tot]=s[i],ans[s[i]]=tot;
else if(s[i] < d[]) d[]=s[i],ans[s[i]]=;//error!!!放入第一个ans当然=1了
else half(s[i]);
//ans[s[i]]=tot;//ans[s[i]]代表放入了s[i]后的最大ans,error 不能在这里就改最大ans,因为会统计到大于s[i]的ans
//error!!!但还是要前缀和取max,因为这个只是统计到了s[i]的ans,还要考虑比s[i]小的数(之前插入)的ans
//因为比s[i]小的数位置可能在右边,这个时候还没有统计到
}//error!!!注意是存入对应的值所在位置
for(R i=;i<=n;i++)
{
maxn=max(maxn,ans[i]);
printf("%d\n",maxn);
}
} int main()
{
// freopen("in.in","r",stdin);
fread(READ,,,stdin);
pre();
work();
// fclose(stdin);
return ;
}
[TJOI2013]最长上升子序列 平衡树的更多相关文章
- Bzoj 3173: [Tjoi2013]最长上升子序列 平衡树,Treap,二分,树的序遍历
3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1183 Solved: 610[Submit][St ...
- bzoj3173[Tjoi2013]最长上升子序列 平衡树+lis
3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2253 Solved: 1136[Submit][S ...
- BZOJ 3173: [Tjoi2013]最长上升子序列( BST + LIS )
因为是从1~n插入的, 慢插入的对之前的没有影响, 所以我们可以用平衡树维护, 弄出最后的序列然后跑LIS就OK了 O(nlogn) --------------------------------- ...
- BZOJ_3173_[Tjoi2013]最长上升子序列_splay
BZOJ_3173_[Tjoi2013]最长上升子序列_splay Description 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数 ...
- 【LG4309】【BZOJ3173】[TJOI2013]最长上升子序列
[LG4309][BZOJ3173][TJOI2013]最长上升子序列 题面 洛谷 BZOJ 题解 插入操作显然用平衡树就行了 然后因为后面的插入对前面的操作无影响 就直接在插入完的序列上用树状数组求 ...
- bzoj 3173 [Tjoi2013]最长上升子序列 (treap模拟+lis)
[Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2213 Solved: 1119[Submit][Status] ...
- [BZOJ3173][Tjoi2013]最长上升子序列
[BZOJ3173][Tjoi2013]最长上升子序列 试题描述 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上 ...
- BZOJ 3173: [Tjoi2013]最长上升子序列
3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1524 Solved: 797[Submit][St ...
- BZOJ 3173: [Tjoi2013]最长上升子序列 [splay DP]
3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1613 Solved: 839[Submit][St ...
随机推荐
- 「日常训练」Card Game Cheater(HDU-1528)
题意与分析 题意是这样的:有\(n\)张牌,然后第一行是Adam的牌,第二行是Eve的牌:每两个字符代表一张牌,第一个字符表示牌的点数,第二个表示牌的花色.Adam和Eve每次从自己的牌中选出一张牌进 ...
- uiautomatorviewer定位App元素
这个工具是Android SDK自带的, 日常的工作中经常要使用的, 在C:\Android\sdk\tools\bin目录下: 双击之, 请注意, 我一般选择第一个机器人小图标Device Scre ...
- VMware 15.0下载及安装教程
虚拟机 VMware WorkStation Pro15 下载及安装详细解 9虚拟机 VMware WorkStation Pro15 下载及安装详细解. 虚拟机官方网站: https://www.v ...
- Android 修改系统默认density
如你所知在Anroid N 中,系统添加了多个级别的密度值供用户选择. 系统的默认的值就是 ro.sf.lcd_density 同时其他级别的默认值的大小基础也是以默认值为基础,然后乘以不同的比例得到 ...
- Python全栈 Web(边框、盒模型、背景)
原文地址 https://yq.aliyun.com/articles/634926 ......................................................... ...
- Java进阶知识点:并发容器背后的设计理念
一.背景 容器是Java编程中使用频率很高的组件,但Java默认提供的基本容器(ArrayList,HashMap等)均不是线程安全的.当容器和多线程并发编程相遇时,程序员又该何去何从呢? 通常有两种 ...
- [C++] OOP - Virtual Functions and Abstract Base Classes
Ordinarily, if we do not use a function, we do not need to supply a definition of the function. Howe ...
- Python中package的导入语法
在Python中,一个目录被称为一个package.import和from语法除了导入module文件之外,还可以导入package,语法如下: # import语法 import dir1.dir2 ...
- "Hello world!"团队第八次会议
Scrum会议 今天是我们"Hello world!"团队第八次召开会议,博客内容是: 1.会议时间 2.会议成员 3.会议地点 4.会议内容 5.todo list 6.会议照片 ...
- 实现虚拟机VMware上Centos的linux与windows互相复制与粘贴
转自:http://blog.csdn.net/u012243115/article/details/40454063 1.打开虚拟机的菜单“虚拟机”,下拉框中会有一个“安装 VMwareTools” ...