POJ3384:Feng Shui——题解
http://poj.org/problem?id=3384
题目大意:给一个顺时针序的多边形,求在里面放半径为r的两个圆使得两圆覆盖的面积最大,求出这样的圆的坐标。
————————————————
解题思路:将多边形内缩进r,然后求内核。
枚举点对然后根据点对距离判断是否覆盖面积最大即可。
注意:可能两圆重合。
#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<stack>
#include<cmath>
#include<algorithm>
using namespace std;
typedef double dl;
const dl eps=1e-;
const int N=;
struct Point{
dl x;
dl y;
}p[N],point[N],q[N],z;
//point,初始点
//q,暂时存可行点
//p,记录可行点
int n,curcnt,cnt;
dl r;
//curcnt,暂时存可行点个数
//cnt,记录可行点个数
inline Point getmag(Point a,Point b){
Point s;
s.x=b.x-a.x;s.y=b.y-a.y;
return s;
}
inline dl multiX(Point a,Point b){
return a.x*b.y-b.x*a.y;
}
inline void getline(Point x,Point y,dl &a,dl &b,dl &c){
a=y.y-x.y;
b=x.x-y.x;
c=y.x*x.y-x.x*y.y;
return;
}
inline Point intersect(Point x,Point y,dl a,dl b,dl c){
Point s;
dl u=fabs(a*x.x+b*x.y+c);
dl v=fabs(a*y.x+b*y.y+c);
s.x=(x.x*v+y.x*u)/(u+v);
s.y=(x.y*v+y.y*u)/(u+v);
return s;
}
inline void cut(dl a,dl b,dl c){
curcnt=;
for(int i=;i<=cnt;i++){
if(a*p[i].x+b*p[i].y+c>-eps)q[++curcnt]=p[i];
else{
if(a*p[i-].x+b*p[i-].y+c>eps){
q[++curcnt]=intersect(p[i],p[i-],a,b,c);
}
if(a*p[i+].x+b*p[i+].y+c>eps){
q[++curcnt]=intersect(p[i],p[i+],a,b,c);
}
}
}
for(int i=;i<=curcnt;i++)p[i]=q[i];
p[curcnt+]=p[];p[]=p[curcnt];
cnt=curcnt;
return;
}
inline void init(){
for(int i=;i<=n;i++)p[i]=point[i];
z.x=z.y=;
p[n+]=p[];
p[]=p[n];
point[n+]=point[];
cnt=n;
return;
}
inline void regular(){//调换方向
for(int i=;i<(n+)/;i++)swap(point[i],point[n-i]);
return;
}
inline dl dis(Point a,Point b){
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
inline void solve(){
init();
for(int i=;i<=n;i++){
Point ta,tb,tt;
tt.x=point[i+].y-point[i].y;
tt.y=point[i].x-point[i+].x;
dl k=r/sqrt(tt.x*tt.x+tt.y*tt.y);
tt.x*=k;tt.y*=k;
ta.x=point[i].x+tt.x;
ta.y=point[i].y+tt.y;
tb.x=point[i+].x+tt.x;
tb.y=point[i+].y+tt.y;
dl a,b,c;
getline(ta,tb,a,b,c);
cut(a,b,c);
}
return;
}
int main(){
scanf("%d%lf",&n,&r);
for(int i=;i<=n;i++){
scanf("%lf%lf",&point[i].x,&point[i].y);
}
solve();
int x,y;
dl res=-;
for(int i=;i<=cnt;i++){
for(int j=i;j<=cnt;j++){
dl tmp=dis(p[i],p[j]);
if(tmp>res){
res=tmp;
x=i;
y=j;
}
}
}
printf("%.4f %.4f %.4f %.4f\n",p[x].x,p[x].y,p[y].x,p[y].y);
return ;
}
POJ3384:Feng Shui——题解的更多相关文章
- POJ3384 Feng Shui
嘟嘟嘟 昨天我看到的这道题,今天终于A了. 写这道题的时间其实并不长,主要是我为这题现学了一个半平面相交(虽然是\(O(n ^ 2)\)的--) 思路说难也不难,关键是第一步的转化得想到. 首先可以肯 ...
- POJ 3384 Feng Shui (半平面交)
Feng Shui Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 3743 Accepted: 1150 Speci ...
- POJ 3384 Feng Shui 半平面交
题目大意:一个人很信"Feng Shui",他要在房间里放两个圆形的地毯. 这两个地毯之间可以重叠,可是不能折叠,也不能伸到房间的外面.求这两个地毯可以覆盖的最大范围.并输出这两个 ...
- POJ 3384 Feng Shui(计算几何の半平面交+最远点对)
Description Feng shui is the ancient Chinese practice of placement and arrangement of space to achie ...
- poj 3384 Feng Shui (Half Plane Intersection)
3384 -- Feng Shui 构造半平面交,然后求凸包上最远点对. 这题的题意是给出一个凸多边形区域,要求在其中放置两个半径为r的圆(不能超出凸多边形区域),要求求出两个圆心,使得多边形中没有被 ...
- POJ 3384 Feng Shui 凸包直径 + 半平面交
G++一直没有过了 换成 C++果断A掉了...It's time to bet RP. 题意:给一个多边形,然后放进去两个圆,让两个圆的覆盖面积尽量最大,输出两个圆心的坐标. 思路:将多边形的边向里 ...
- POJ 3384 Feng Shui --直线切平面
题意:房间是一个凸多边形,要在里面铺设两条半径为r的圆形地毯,可以重叠,现在要求分别铺设到哪,使地毯所占的地面面积最大. 解法:要使圆形地毯所占面积最大,圆形地毯一定是与边相切的,这样才能使尽量不重叠 ...
- POJ 3384 Feng Shui(半平面交向内推进求最远点对)
题目链接 题意 : 两个圆能够覆盖的最大多边形面积的时候两个圆圆心的坐标是多少,两个圆必须在多边形内. 思路 : 向内推进r,然后求多边形最远的两个点就是能覆盖的最大面积. #include < ...
- POJ 3384 Feng Shui
http://poj.org/problem?id=3384 题意:给一个凸包,求往里面放两个圆(可重叠)的最大面积时的两个圆心坐标. 思路:先把凸包边往内推R,做半平面交,然后做旋转卡壳,此时得到最 ...
随机推荐
- PyYAML学习第一篇
1. YAML是一种交互式和可读性强的脚本语言.脚本语言都是解释性语言. PyYAML是YAML语言的编辑器和解释器.在python语言里面有PyYAML的安装包. 相关学习文档:http://pyy ...
- LWM2M的DISCOVER操作
1. 先看下DISCOVER的数据流,工作服务器下发的指令到设备客户端 2. 解释,这个操作是用来发现Object, Object Instances, and Resources的属性,同时可以发现 ...
- MVC、MVVM
一.MVC 所谓的 MVC 是指: Model: 数据的拥有者,实现具体的业务逻辑. View: 具体的用户界面,如按钮.列表.图片. Controller: 负责将 View 中用户的动作传达给 M ...
- Oracle 字段拆分替换在合并成一条
看了网上很多Oracle字段拆分的实例,但是都未能完全满足要求,或许是我水平不够未能很好的理解,如果有大神懂得并且愿意告知我的,可以私信我,在这里真诚的感谢! 1. 首先建立表并插入测试数据 drop ...
- 通过 zxing 生成二维码
二维码现在随处可见,在日常的开发中,也会经常涉及到二维码的生成,特别是开发一些活动或者推广方面的功能时,二维码甚至成为必备功能点.本文介绍通过 google 的 zxing 包生成带 logo 的二维 ...
- Git 新建文件并提交
1.创建一个readme.txt. cd /home/cyp/learngit touch readme.txt vim readme.txt 编写内容, wq 保存推出 2.提交步骤 2.1 gi ...
- CodeForces - 776C(前缀和+思维)
链接:CodeForces - 776C 题意:给出数组 a[n] ,问有多少个区间和等于 k^x(x >= 0). 题解:求前缀和,标记每个和的个数.对每一个数都遍历到1e5,记录到答案. # ...
- (转)GEM -次表面散射的实时近似
次表面散射(Subsurface Scattering),简称SSS,或3S,是光射入非金属材质后在内部发生散射, 最后射出物体并进入视野中产生的现象, 即光从表面进入物体经过内部散射,然后又通过物体 ...
- MarkDown编辑器使用
有几款好用的MarkDown编辑器,参考: https://blog.csdn.net/bat67/article/details/72804251 我就下载的是 MarkDown 2来使用. 现用现 ...
- java学习笔记-8.对象的容纳
1.Iterator(迭代器)和Enumeration(枚举类),都是用来遍历集合的,他们都是接口.区别是Enumeration只能读取集合的数据,而Iterator可以对数据进行删除,Iterato ...