http://poj.org/problem?id=3384

题目大意:给一个顺时针序的多边形,求在里面放半径为r的两个圆使得两圆覆盖的面积最大,求出这样的圆的坐标。

————————————————

解题思路:将多边形内缩进r,然后求内核。

枚举点对然后根据点对距离判断是否覆盖面积最大即可。

注意:可能两圆重合。

#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<stack>
#include<cmath>
#include<algorithm>
using namespace std;
typedef double dl;
const dl eps=1e-;
const int N=;
struct Point{
dl x;
dl y;
}p[N],point[N],q[N],z;
//point,初始点
//q,暂时存可行点
//p,记录可行点
int n,curcnt,cnt;
dl r;
//curcnt,暂时存可行点个数
//cnt,记录可行点个数
inline Point getmag(Point a,Point b){
Point s;
s.x=b.x-a.x;s.y=b.y-a.y;
return s;
}
inline dl multiX(Point a,Point b){
return a.x*b.y-b.x*a.y;
}
inline void getline(Point x,Point y,dl &a,dl &b,dl &c){
a=y.y-x.y;
b=x.x-y.x;
c=y.x*x.y-x.x*y.y;
return;
}
inline Point intersect(Point x,Point y,dl a,dl b,dl c){
Point s;
dl u=fabs(a*x.x+b*x.y+c);
dl v=fabs(a*y.x+b*y.y+c);
s.x=(x.x*v+y.x*u)/(u+v);
s.y=(x.y*v+y.y*u)/(u+v);
return s;
}
inline void cut(dl a,dl b,dl c){
curcnt=;
for(int i=;i<=cnt;i++){
if(a*p[i].x+b*p[i].y+c>-eps)q[++curcnt]=p[i];
else{
if(a*p[i-].x+b*p[i-].y+c>eps){
q[++curcnt]=intersect(p[i],p[i-],a,b,c);
}
if(a*p[i+].x+b*p[i+].y+c>eps){
q[++curcnt]=intersect(p[i],p[i+],a,b,c);
}
}
}
for(int i=;i<=curcnt;i++)p[i]=q[i];
p[curcnt+]=p[];p[]=p[curcnt];
cnt=curcnt;
return;
}
inline void init(){
for(int i=;i<=n;i++)p[i]=point[i];
z.x=z.y=;
p[n+]=p[];
p[]=p[n];
point[n+]=point[];
cnt=n;
return;
}
inline void regular(){//调换方向
for(int i=;i<(n+)/;i++)swap(point[i],point[n-i]);
return;
}
inline dl dis(Point a,Point b){
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
inline void solve(){
init();
for(int i=;i<=n;i++){
Point ta,tb,tt;
tt.x=point[i+].y-point[i].y;
tt.y=point[i].x-point[i+].x;
dl k=r/sqrt(tt.x*tt.x+tt.y*tt.y);
tt.x*=k;tt.y*=k;
ta.x=point[i].x+tt.x;
ta.y=point[i].y+tt.y;
tb.x=point[i+].x+tt.x;
tb.y=point[i+].y+tt.y;
dl a,b,c;
getline(ta,tb,a,b,c);
cut(a,b,c);
}
return;
}
int main(){
scanf("%d%lf",&n,&r);
for(int i=;i<=n;i++){
scanf("%lf%lf",&point[i].x,&point[i].y);
}
solve();
int x,y;
dl res=-;
for(int i=;i<=cnt;i++){
for(int j=i;j<=cnt;j++){
dl tmp=dis(p[i],p[j]);
if(tmp>res){
res=tmp;
x=i;
y=j;
}
}
}
printf("%.4f %.4f %.4f %.4f\n",p[x].x,p[x].y,p[y].x,p[y].y);
return ;
}

POJ3384:Feng Shui——题解的更多相关文章

  1. POJ3384 Feng Shui

    嘟嘟嘟 昨天我看到的这道题,今天终于A了. 写这道题的时间其实并不长,主要是我为这题现学了一个半平面相交(虽然是\(O(n ^ 2)\)的--) 思路说难也不难,关键是第一步的转化得想到. 首先可以肯 ...

  2. POJ 3384 Feng Shui (半平面交)

    Feng Shui Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 3743   Accepted: 1150   Speci ...

  3. POJ 3384 Feng Shui 半平面交

    题目大意:一个人很信"Feng Shui",他要在房间里放两个圆形的地毯. 这两个地毯之间可以重叠,可是不能折叠,也不能伸到房间的外面.求这两个地毯可以覆盖的最大范围.并输出这两个 ...

  4. POJ 3384 Feng Shui(计算几何の半平面交+最远点对)

    Description Feng shui is the ancient Chinese practice of placement and arrangement of space to achie ...

  5. poj 3384 Feng Shui (Half Plane Intersection)

    3384 -- Feng Shui 构造半平面交,然后求凸包上最远点对. 这题的题意是给出一个凸多边形区域,要求在其中放置两个半径为r的圆(不能超出凸多边形区域),要求求出两个圆心,使得多边形中没有被 ...

  6. POJ 3384 Feng Shui 凸包直径 + 半平面交

    G++一直没有过了 换成 C++果断A掉了...It's time to bet RP. 题意:给一个多边形,然后放进去两个圆,让两个圆的覆盖面积尽量最大,输出两个圆心的坐标. 思路:将多边形的边向里 ...

  7. POJ 3384 Feng Shui --直线切平面

    题意:房间是一个凸多边形,要在里面铺设两条半径为r的圆形地毯,可以重叠,现在要求分别铺设到哪,使地毯所占的地面面积最大. 解法:要使圆形地毯所占面积最大,圆形地毯一定是与边相切的,这样才能使尽量不重叠 ...

  8. POJ 3384 Feng Shui(半平面交向内推进求最远点对)

    题目链接 题意 : 两个圆能够覆盖的最大多边形面积的时候两个圆圆心的坐标是多少,两个圆必须在多边形内. 思路 : 向内推进r,然后求多边形最远的两个点就是能覆盖的最大面积. #include < ...

  9. POJ 3384 Feng Shui

    http://poj.org/problem?id=3384 题意:给一个凸包,求往里面放两个圆(可重叠)的最大面积时的两个圆心坐标. 思路:先把凸包边往内推R,做半平面交,然后做旋转卡壳,此时得到最 ...

随机推荐

  1. Unity2017 经典游戏开发教程 算法分析与实现 (张帆 著)

    https://meta.box.lenovo.com/link/view/82c451b41ce34e81a4b34cb46747d3d5 第1章 熟悉Unity软件的操作 第2章 打地鼠 (已看) ...

  2. c# enum 解析

    解析定义的枚举 public enum OrderPaymentStatus { /// <summary> /// 未支付 /// </summary> [Descripti ...

  3. katalon系列五:使用Katalon Studio手动编写WEB自动化脚本

    上一篇主要讲了怎么录制脚本,这次我们看看怎么手动编写脚本,接下来就编写一个简单的用百度搜索的脚本. 1.我们先抓取页面上的元素,点击工具栏上的Spy Web按钮(地球上有个绿点),URL输入百度地址, ...

  4. unity发布自定义分辨率

    如果你需要发布unity时想要使用自己设置的分辨率仅需要一下几个步骤: 打开Build Setting->PlayerSetting->Resolution and Presentatio ...

  5. Python2快速入门教程,只需要这十五张图片就够了!

    今天给大家分享的教程是适用于Python 2.7,但它可能适用于Python 2.Python 2.7将停止在2020中的支持. 与Python 2.7和3兼容的Python代码是完全可能的.通过使用 ...

  6. 腾讯地图和百度地图的PHP相互转换

    /** * 百度地图---->腾讯地图 * @param double $lat 纬度 * @param double $lng 经度 * @return array(); */ functio ...

  7. django启动创建用户失败

    a django应用启动 b 访问127.0.0.1:8000,报错信息如下,原因为没有这个用户需要创建下用户 c 创建用户过程中报错原因是因为添加了app需要告诉django,这个 模型发生了改变, ...

  8. C++ 学习笔记之——STL 库 vector

    vector 是一种顺序容器,可以看作是可以改变大小的数组. 就像数组一样,vector 占用连续的内存地址来存储元素,因此可以像数组一样用偏移量来随机访问,但是它的大小可以动态改变,容器会自动处理内 ...

  9. 聊聊、dubbo 找不到 dubbo.xsd 报错

    平常在用 Dubbo 的时候,创建 xml 会提示 http://code.alibabatech.com/schema/dubbo/dubbo.xsd 找不到. 大家可以去 https://gith ...

  10. Python3 异常与断言

    1.异常 当出现错误时,程序就会发生异常 num1=input('Please input a num1: ') num2=input('Please input a num2: ') print(f ...