Yellowstar likes integers so much that he listed all positive integers in ascending order,but he hates those numbers which can be written as a^b (a, b are positive integers,2<=b<=r),so he removed them all.Yellowstar calls the sequence that formed by the rest integers“Y sequence”.When r=3,The first few items of it are:
2,3,5,6,7,10......
Given positive integers n and r,you should output Y(n)(the n-th number of Y sequence.It is obvious that Y(1)=2 whatever r is).

InputThe first line of the input contains a single number T:the number of test cases.
Then T cases follow, each contains two positive integer n and r described above.
n<=2*10^18,2<=r<=62,T<=30000.
OutputFor each case,output Y(n).Sample Input

2
10 2
10 3

Sample Output

13
14

题意:F(x)表示不大于x的而且满足不少a^b形式的个数,求ans,使得F(ans)=N。

思路:我们可以荣容斥的方法求F(x)。 所以可以用二分来得到答案,但是我们可以用二分超时。 所以我们需要用高效的方法。

先假设当前答案是ans,然后求F(ans),如果F(ans)<N,表示还至少缺N-F(ans)个,所以ans=ans+N-F(ans),继续下一次验证,直到F(ans)==N。

这样优于二分的原因是a^b的形式比较离散,所以迭代的次数比较少。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
int prime[]={-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-};
vector<int>p;
void getR(int R)
{
p.clear();
for(int i=;abs(prime[i])<=R;i++){
int sz=p.size();
for(int j=;j<sz;j++){
if(abs(prime[i]*p[j])<=)p.push_back(prime[i]*p[j]);
}
p.push_back(prime[i]);
}
}
ll cal(ll x)
{
if(x==) return ;
ll res=x;
for(int i=;i<p.size();i++){
ll tmp=(ll)pow(x+0.5,1.0/abs(p[i]))-;
if(p[i]<) res-=tmp;
else res+=tmp;
}
return res-;
}
void solve(ll N,int R)
{
getR(R); ll ans=N;
while(){
ll tmp=cal(ans);
if(tmp==N) break;
ans+=N-tmp;
}
printf("%I64d\n",ans);
}
int main()
{
int T,R; ll N;
scanf("%d",&T);
while(T--){
scanf("%I64d%d",&N,&R);
solve(N,R);
}
return ;
}

超时的二分代码:

#include<bits/stdc++.h>
#define ll unsigned long long
using namespace std;
int prime[]={-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-};
vector<int>p;
void getR(int R)
{
p.clear();
for(int i=;abs(prime[i])<=R;i++){
int sz=p.size();
for(int j=;j<sz;j++){
if(abs(prime[i]*p[j])<=)p.push_back(prime[i]*p[j]);
}
p.push_back(prime[i]);
}
}
ll cal(ll x)
{
if(x==) return ;
ll res=x;
for(int i=;i<p.size();i++){
ll tmp=(ll)pow(x+0.5,1.0/abs(p[i]))-;
if(p[i]<) res-=tmp;
else res+=tmp;
}
return res-;
}
void solve(ll N,int RR)
{
getR(RR); ll L=N,R=L+,ans;
while(L<=R){
ll Mid=(L+R)/;
if(cal(Mid)>=N) ans=Mid,R=Mid-;
else L=Mid+;
}
cout<<ans<<endl;
}
int main()
{
int T,R; ll N;
scanf("%d",&T);
while(T--){
cin>>N>>R;
solve(N,R);
}
return ;
}

HDU - 5297:Y sequence (迭代&容斥)的更多相关文章

  1. HDU 5297 Y sequence 容斥 迭代

    Y sequence 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5297 Description Yellowstar likes integer ...

  2. HDU 5297 Y sequence Y数列

    题意:给定正整数n和r.定义Y数列为从正整数序列中删除全部能表示成a^b(2 ≤ b ≤ r)的数后的数列,求Y数列的第n个数是多少. 比如n = 10. r = 3,则Y数列为2 3 5 6 7 1 ...

  3. HDU 5768 Lucky7 (中国剩余定理+容斥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5768 给你n个同余方程组,然后给你l,r,问你l,r中有多少数%7=0且%ai != bi. 比较明显 ...

  4. HDU 6053 TrickGCD 莫比乌斯函数/容斥/筛法

    题意:给出n个数$a[i]$,每个数可以变成不大于它的数,现问所有数的gcd大于1的方案数.其中$(n,a[i]<=1e5)$ 思路:鉴于a[i]不大,可以想到枚举gcd的值.考虑一个$gcd( ...

  5. GCD HDU - 1695 (欧拉 + 容斥)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. hdu 6390 欧拉函数+容斥(莫比乌斯函数) GuGuFishtion

    http://acm.hdu.edu.cn/showproblem.php?pid=6390 题意:求一个式子 题解:看题解,写代码 第一行就看不出来,后面的sigma公式也不会化简.mobius也不 ...

  7. hdu 5768 Lucky7 中国剩余定理+容斥+快速乘

    Lucky7 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem D ...

  8. hdu 4336 Card Collector —— Min-Max 容斥

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=4336 bzoj 4036 的简单版,Min-Max 容斥即可. 代码如下: #include<cst ...

  9. HDU 2841 Visible Trees(容斥定理)

    Visible Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

随机推荐

  1. LeetCode: Next Greater Element I

    stack和map用好就行 public class Solution { public int[] nextGreaterElement(int[] findNums, int[] nums) { ...

  2. 【hihocoder】01背包

    描述 且说上一周的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的时刻了! 小Ho现在手上有M张奖券,而奖品区有N件奖品,分别标号为1到N,其中第i件奖品需要ne ...

  3. Java集合类初始容量、加载因子、扩容增量

    当底层实现涉及到扩容时,容器或重新分配一段更大的连续内存(如果是离散分配则不需要重新分配,离散分配都是插入新元素时动态分配内存),要将容器原来的数据全部复制到新的内存上,这无疑使效率大大降低. 加载因 ...

  4. Linux上超酷的命令行扩展工具Oh My Zsh

    Oh My Zsh 是一款社区驱动的命令行工具,正如它的主页上说的,Oh My Zsh 是一种生活方式.它基于 zsh 命令行,提供了主题配置,插件机制,已经内置的便捷操作.给我们一种全新的方式使用命 ...

  5. 解析JDK动态代理实现原理

    JDK动态代理使用实例 代理模式的类图如上.关于静态代理的示例网上有很多,在这里就不讲了. 因为本篇讲述要点是JDK动态代理的实现原理,直接从JDK动态代理实例开始. 首先是Subject接口类. p ...

  6. Reverse Nodes In K Group,将链表每k个元素为一组进行反转---特例Swap Nodes in Pairs,成对儿反转

    问题描述:1->2->3->4,假设k=2进行反转,得到2->1->4->3:k=3进行反转,得到3->2->1->4 算法思想:基本操作就是链表 ...

  7. hdu 5768 Lucky7 中国剩余定理+容斥+快速乘

    Lucky7 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem D ...

  8. redis的Python接口调用

    Redis安装及教程: redis教程 安装Python的redis接口模块 redis-py requires a running Redis server. See redis教程 for ins ...

  9. [Kafka] - Kafka Java Producer代码实现

    根据业务需要可以使用Kafka提供的Java Producer API进行产生数据,并将产生的数据发送到Kafka对应Topic的对应分区中,入口类为:Producer Kafka的Producer ...

  10. iscroll.js的简单使用方法(总结)

    iscroll.js的简单使用方法(总结) 一.总结 一句话总结:Scroll是一个类,每个需要使用滚动功能的区域均要进行初始化. 最佳的HTML结构如下: <div id="wrap ...