参考link  https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

基础

Numpy主要用于处理多维数组,数组中元素通常是数字,索引值为自然数

在Numpy中,维度被称为axesaxes的总数为rank (秩)

(关于矩阵秩的概念,可以参考https://www.zhihu.com/question/21605094 与

https://www.applysquare.com/topic-cn/78QfWkiPt/

Numpy的数组类称为 ndarray,别名array

(numpy.array与 array.array不同,后者只处理一维数组)

ndarray属性

1. ndim

返回数组的秩

2.shape

返回数组各个维度大小

3.size

数组所有元素总个数,与shape结果相等

4.dtype

数组元素类型

5.itemsize

字节表示的元素类型大小,与ndarray.dtype.itemsize相等

int32 -> 4 (32/8)  int64 -> 8 (64/8)

6.data

包含数组实际元素的缓存区,通常不使用

举例

 import numpy as np
a=np.arange(15).reshape(3,5)
print(a) out:
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]]) print(type(a))
print(a.shape)
print(a.ndim)
print(a.dtype.name)
print(a.item.size) out:
numpy.ndarray
(3,5)
2
'int32'
4

创建数组

 #将列表转换为array
>>> import numpy as np
>>> a = np.array([2,3,4])
>>> a
array([2, 3, 4])
>>> a.dtype
dtype('int32')
>>> b = np.array([1.2, 3.5, 5.1])
>>> b.dtype
dtype('float64') #创建二维数组array
>>> b = np.array([(1.5,2,3), (4,5,6)])
>>> b
array([[ 1.5, 2. , 3. ],
[ 4. , 5. , 6. ]]) #创建一维数组
>>> np.arange( 10, 30, 5 )
array([10, 15, 20, 25])
>>> np.arange( 0, 2, 0.3 )
array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8]) #使用linespace创建数组
>>> from numpy import pi
>>> np.linspace( 0, 2, 9 )
array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ])
>>> x = np.linspace( 0, 2*pi, 100 )
>>> f = np.sin(x)
 >>> b = np.arange(12).reshape(3,4)
>>> b
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>>
>>> b.sum(axis=0) # 按列求和
array([12, 15, 18, 21])
>>> b.sum(axis=1) # 按行求和
array([ 6, 22, 38])
>>> b.min(axis=1) # 每行最小值
array([0, 4, 8])
>>> b.cumsum(axis=1) # 按列累积求和
array([[ 0, 1, 3, 6],
[ 4, 9, 15, 22],
[ 8, 17, 27, 38]])
 # 常用函数
>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)
array([ 1. , 2.71828183, 7.3890561 ])
>>> np.sqrt(B)
array([ 0. , 1. , 1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([ 2., 0., 6.])
 # 索引、切片、迭代
# 一维数组
>>a=np.arange(10)**3
>>print(a)
array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729], dtype=int32)
>>a[2]
8
>>a[2:5]
array([ 8, 27, 64], dtype=int32)
>>a[:6:2]=-100
>>a
array([-10, 1, -10, 27, -10, 125, 216, 343, 512, 729], dtype=int32)
>>a[::-1]
array([729, 512, 343, 216, 125, -10, 27, -10, 1, -10], dtype=int32) #多维数组
>>> def f(x,y):
... return 10*x+y
...
>>> b = np.fromfunction(f,(5,4),dtype=int)
>>> b
array([[ 0, 1, 2, 3],
[10, 11, 12, 13],
[20, 21, 22, 23],
[30, 31, 32, 33],
[40, 41, 42, 43]])
>>> b[2,3]
23
>>> b[0:5, 1] #第二列
array([ 1, 11, 21, 31, 41])
>>> b[ : ,1] #第二列
array([ 1, 11, 21, 31, 41])
>>> b[1:3, : ] #第二行、第三行
array([[10, 11, 12, 13],
[20, 21, 22, 23]])
>>b[-1] #相当于 b[-1,:],最后一行
array([40, 41, 42, 43])

Python数据分析基础——Numpy tutorial的更多相关文章

  1. python数据分析基础——numpy和matplotlib

    numpy库是python的一个著名的科学计算库,本文是一个quickstart. 引入:计算BMI BMI = 体重(kg)/身高(m)^2假如有如下几组体重和身高数据,让求每组数据的BMI值: w ...

  2. python数据分析基础——pandas Tutorial

    参考pandas官方文档: http://pandas.pydata.org/pandas-docs/stable/10min.html#min 1.pandas中的数据类型 Series 带有索引标 ...

  3. Numpy使用大全(python矩阵相关运算大全)-Python数据分析基础2

    //2019.07.10python数据分析基础——numpy(数据结构基础) import numpy as np: 1.python数据分析主要的功能实现模块包含以下六个方面:(1)numpy—— ...

  4. Python数据分析基础教程

    Python数据分析基础教程(第2版)(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1_FsReTBCaL_PzKhM0o6l0g 提取码:nkhw 复制这段内容后 ...

  5. Python数据分析基础PDF

    Python数据分析基础(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1ImzS7Sy8TLlTshxcB8RhdA 提取码:6xeu 复制这段内容后打开百度网盘手 ...

  6. python数据分析基础

    ---恢复内容开始--- Python数据分析基础(1) //2019.07.09python数据分析基础总结1.python数据分析主要使用IDE是Pycharm和Anaconda,最为常用和方便的 ...

  7. Python数据分析(二): Numpy技巧 (1/4)

    In [1]: import numpy numpy.__version__ Out[1]: '1.13.1' In [2]: import numpy as np  

  8. Python数据分析(二): Numpy技巧 (2/4)

    numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   昨天晚上发了第一 ...

  9. Python数据分析(二): Numpy技巧 (3/4)

    numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   昨天晚上发了第一 ...

随机推荐

  1. POJ 3122 Pie(二分+贪心)

    Pie Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 22684   Accepted: 7121   Special Ju ...

  2. UVALive4682 XOR Sum

    UVALive4682 XOR Sum 题意 给定一个数组, 求连续子序列中异或值最大的值. 题解 假设答案区间为 [L, R], 则答案为 XOR[L, R], 可以将区间分解为 XOR[L,R] ...

  3. Java IP白名单相关工具类

    关于设置IP白名单相关的一些方法,整理,记录了一下. package com.tools.iptool; import java.util.ArrayList; import java.util.Ha ...

  4. MyBatis之Mapper XML 文件详解(三)-Result Maps

    resultMap 元素是 MyBatis 中最重要最强大的元素.它就是让你远离 90%的需要从结果 集中取出数据的 JDBC 代码的那个东西, 而且在一些情形下允许你做一些 JDBC 不支持的事 情 ...

  5. mysql碰到的问题总结

    1.问题描述: 连接数据库出现大约10s延迟后才能连接,排除网络问题 解决方案: 通过抓包工具tcpdump抓包分析mysql在连接开始有近10s的空白请求,问题原因就在这 ,不知道在执行什么请求,后 ...

  6. Spring Cloud 微服务入门(一)--初识分布式及其发展历程

    分布式开发出现背景 当有计算机出现一段时间之后就开始有人去想如何将不同的电脑进行网络连接,而网络连接之后对于web的项目开发就探索所谓的分布式设计,同时人们也意识到重要的数据必须多份存在.所以分布式就 ...

  7. 05JavaScript语句

    1.JavaScript 语句 JavaScript 语句是发给浏览器的命令. 这些命令的作用是告诉浏览器要做的事情. 2.分号 ; 分号用于分隔 JavaScript 语句. 通常我们在每条可执行的 ...

  8. js数组去重(多种写法)

    最基本的写法 使用indexOf() var arr = [1,1,5,77,32,54,2,4,5,2,2,4,52,2,2,2,2,2] //比较常规的语法使用indexOf来判断是否已经存在 g ...

  9. vim 配色方案

    1. 自己电脑上的vim 注释很难看清,又不想取消高亮.原来显示: 在 if has("syntax") syntax onendif 语句下面追加一句: colorscheme ...

  10. gg_pie

    gg_pie gg_pie PeRl 今天尝试了一下用ggplot2画饼图,转换一下极坐标就可以实现,但是和以前画heatmap的时候不一样的是,我们在卷坐标的时候需要让数据集中在一个坐标轴上. 另一 ...