参考:https://phqghume.github.io/2018/05/19/%E8%87%AA%E9%80%82%E5%BA%94%E8%BE%9B%E6%99%AE%E6%A3%AE%E6%B3%95/ 以及洛谷不多的题解。

辛普森推导过程就看参考吧,当然你要想看懂推导需要:

1.会高中导数那点东西,至少知道原函数怎么求。

2.粗略了解定积分。

3.知道微积分第一、第二基本定理(从知乎上找的:https://www.zhihu.com/question/21439225)。

然后推导就很简单了,实际上就是用的是将任意曲线近似转换成二次函数曲线去求。

————————————————————

https://www.luogu.org/problemnew/show/P4525

计算积分

结果保留至小数点后6位。

数据保证计算过程中分母不为0且积分能够收敛。

这就是自适应辛普森的板题了,eps开到1e-12大概就能过了。

(话说为什么要“自适应”?那当然是因为精度的原因啦,我们左右分一下将答案求和和一个区间的答案比较一下没有多少误差就return就行啦。)

#include<cmath>
#include<queue>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef double dl;
const dl eps=1e-;
dl a,b,c,d,L,R;
inline dl f(dl x){
return (c*x+d)/(a*x+b);
}
inline dl simpson(dl l,dl r){
dl mid=(l+r)/;
return (f(l)+*f(mid)+f(r))*(r-l)/;
}
inline dl asr(dl l,dl r,dl ans){
dl mid=(l+r)/;
dl l1=simpson(l,mid),r1=simpson(mid,r);
if(fabs(l1+r1-ans)<eps)return l1+r1;
return asr(l,mid,l1)+asr(mid,r,r1);
}
int main(){
scanf("%lf%lf%lf%lf%lf%lf",&a,&b,&c,&d,&L,&R);
printf("%lf\n",asr(L,R,simpson(L,R)));
return ;
}

————————————————————

https://www.luogu.org/problemnew/show/P4526

计算积分

保留至小数点后5位。若积分发散,请输出"orz"。

挺吓人的,但思考a<0显然就发散了。

a>=0时a越大收敛得越慢,于是打表,大概得出来x=12时就已经约为0了。

于是L=eps,R=12跑一遍自适应辛普森法即可。

#include<cmath>
#include<queue>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef double dl;
const dl eps=1e-;
dl a;
inline dl f(dl x){
return pow(x,a/x-x);
}
inline dl simpson(dl l,dl r){
dl mid=(l+r)/;
return (f(l)+*f(mid)+f(r))*(r-l)/;
}
inline dl asr(dl l,dl r,dl ans){
dl mid=(l+r)/;
dl l1=simpson(l,mid),r1=simpson(mid,r);
if(fabs(l1+r1-ans)<eps)return l1+r1;
return asr(l,mid,l1)+asr(mid,r,r1);
}
int main(){
scanf("%lf",&a);
if(a<)puts("orz");
else printf("%.5lf\n",asr(eps,,simpson(eps,)));
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

洛谷4525 & 4526:【模板】自适应辛普森法——题解的更多相关文章

  1. 洛谷 P4525 & P4526 [模板] 自适应辛普森积分

    题目:https://www.luogu.org/problemnew/show/P4525 https://www.luogu.org/problemnew/show/P4526 学习辛普森积分:h ...

  2. 洛谷P3387 【模板】缩点 题解

    背景 今天\(loj\)挂了,于是就有了闲情雅致来刷\(luogu\) 题面 洛谷P3387 [模板]缩点传送门 题意 给定一个\(n\)个点\(m\)条边有向图,每个点有一个权值,求一条路径,使路径 ...

  3. 洛谷.4525.[模板]自适应辛普森法1(Simpson积分)

    题目链接 Simpson积分公式:\[\int_a^bf(x)dx\approx\frac{b-a}{6}\left[f(a)+f(b)+4f(\frac{a+b}{2})\right]\] 推导过程 ...

  4. 洛谷 P3385 【模板】负环 题解

    P3385 [模板]负环 题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 寻找一个从顶点1所能到达的负环,负环定义为:一个边权之和为负的环. 输入格式 第一行一个正整数T ...

  5. 洛谷P4526 【模板】自适应辛普森法2

    P4526 [模板]自适应辛普森法2 洛谷传送门 题目描述 计算积分 保留至小数点后5位.若积分发散,请输出"orz". 输入格式 一行,包含一个实数,为a的值 输出格式 一行,积 ...

  6. 洛谷P4525 【模板】自适应辛普森法1与2

    洛谷P4525 [模板]自适应辛普森法1 与P4526[模板]自适应辛普森法2 P4525洛谷传送门 P4525题目描述 计算积分 结果保留至小数点后6位. 数据保证计算过程中分母不为0且积分能够收敛 ...

  7. P4526 【模板】自适应辛普森法2

    P4526 [模板]自适应辛普森法2 #include <bits/stdc++.h> using namespace std; ; double a; inline double f(d ...

  8. P4525 【模板】自适应辛普森法1

    P4525 [模板]自适应辛普森法1 #include <bits/stdc++.h> using namespace std; ; double a, b, c, d, l, r; in ...

  9. FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)

    前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...

随机推荐

  1. JS dataTables

    原文地址: http://www.cnblogs.com/haogj/archive/2011/03/04/1971328.html   数据来源有四种: 1. 网页DOM对象 $(document) ...

  2. hdu5305 Friends(dfs,多校题)

    Friends Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Sub ...

  3. Python安装教程最新版

    Python安装教程最新版 目前Python官网已经更新到了最新版Python 3.7.1, 相比Python 2系列,它的兼容性不是太好, 不过应该会在不久的将来会全面解决.它的安装比较容易,具体步 ...

  4. Java开发工程师(Web方向) - 03.数据库开发 - 第3章.SQL注入与防范

    第3章--SQL注入与防范 SQL注入与防范 经常遇到的问题:数据安全问题,尤其是sql注入导致的数据库的安全漏洞 国内著名漏洞曝光平台:WooYun.org 数据库泄露的风险:用户信息.交易信息的泄 ...

  5. 题解 CF682C 【Alyona and the Tree】

    简单搜索题,我们每找到一组不满足题目给出条件的点和边就将其整个子树删除,然后最终答案加上该子树的大小即可.注意,搜索的时候如果当前的边权和sum已经为负了,应该将其改为0(可以想想为什么) 注:题目翻 ...

  6. lintcode: Check Sum of Square Numbers

    Check Sum of Square Numbers Given a integer c, your task is to decide whether there're two integers ...

  7. 浙江天搜科技落棋人工智能,加速AI产业布局

    8月31日,2018年IFA大展在德国柏林正式开幕.IFA是全球三大消费电子展之一,在世界范围内久负盛名,被誉为“未来科技风向标”.在这个万众瞩目的展会上,号称“给智能世界铺上云的跑道,装上智能发动机 ...

  8. 试用Markdown来写东西

    试用Markdown来写东西 前言 之前有过一段时间的写东西的习惯,但是后来因为各种原因(主要是因为自己懒惰拖延),所以一直没有写,现在想再开始写,目的很明确,就是发现很多时候,写作能够很好的练习自己 ...

  9. adb 常用命令及操作

    获取序列号: adb get-serialno 查看连接计算机的设备: adb devices 重启机器: adb reboot 重启到bootloader,即刷机模式: adb reboot boo ...

  10. C++clock()延时循环

    函数clock(),返回程序开始执行后所用的系统时间,但是有两个复制问题. 1.clock()返回时间的单位不一定是秒 2.该函数的返回类型在某些系统上可能是Long,也可能是unsigned lon ...