pandas drop_duplicates
函数 : DataFrame.drop_duplicates(subset=None, keep='first', inplace=False)
参数:这个drop_duplicate方法是对DataFrame格式的数据,去除特定列下面的重复行。返回DataFrame格式的数据。
subset : column label or sequence of labels, optional
用来指定特定的列,默认所有列
keep : {‘first’, ‘last’, False}, default ‘first’
删除重复项并保留第一次出现的项
inplace : boolean, default False
是直接在原来数据上修改还是保留一个副本
补充:
Pandas提供了duplicated、Index.duplicated、drop_duplicates函数来标记及删除重复记录
duplicated函数用于标记Series中的值、DataFrame中的记录行是否是重复,重复为True,不重复为False
pandas.DataFrame.duplicated(self, subset=None, keep='first')
pandas.Series.duplicated(self, keep='first')
其中参数解释如下:
subset:用于识别重复的列标签或列标签序列,默认所有列标签
keep=‘frist’:除了第一次出现外,其余相同的被标记为重复
keep='last':除了最后一次出现外,其余相同的被标记为重复
keep=False:所有相同的都被标记为重复
import numpy as np
import pandas as pd
#标记DataFrame重复例子
df = pd.DataFrame({'col1': ['one', 'one', 'two', 'two', 'two', 'three', 'four'], 'col2': [1, 2, 1, 2, 1, 1, 1],
'col3':['AA','BB','CC','DD','EE','FF','GG']},index=['a', 'a', 'b', 'c', 'b', 'a','c'])
#duplicated(self, subset=None, keep='first')
#根据列名标记
#keep='first'
df.duplicated()#默认所有列,无重复记录
df.duplicated('col1')#第二、四、五行被标记为重复
df.duplicated(['col1','col2'])#第五行被标记为重复
#keep='last'
df.duplicated('col1','last')#第一、三、四行被标记重复
df.duplicated(['col1','col2'],keep='last')#第三行被标记为重复
#keep=False
df.duplicated('col1',False)#Series([True,True,True,True,True,False,False],index=['a','a','b','c','b','a','c'])
df.duplicated(['col1','col2'],keep=False)#在col1和col2列上出现相同的,都被标记为重复
type(df.duplicated(['col1','col2'],keep=False))#pandas.core.series.Series
#根据索引标记
df.index.duplicated()#默认keep='first',第二、五、七行被标记为重复
df.index.duplicated(keep='last')#第一、二、三、四被标记为重复
df[df.index.duplicated()]#获取重复记录行
df[~df.index.duplicated('last')]#获取不重复记录行
#标记Series重复例子
#duplicated(self, keep='first')
s = pd.Series(['one', 'one', 'two', 'two', 'two', 'three', 'four'] ,index= ['a', 'a', 'b', 'c', 'b', 'a','c'],name='sname')
s.duplicated()
s.duplicated('last')
s.duplicated(False)
#根据索引标记
s.index.duplicated()
s.index.duplicated('last')
s.index.duplicated(False)
----------------------------
drop_duplicates函数用于删除Series、DataFrame中重复记录,并返回删除重复后的结果
pandas.DataFrame.drop_duplicates(self, subset=None, keep='first', inplace=False)
pandas.Series.drop_duplicates(self, keep='first', inplace=False)
#删除DataFrame重复记录例子
#drop_duplicates(self, subset=None, keep='first', inplace=False)
df.drop_duplicates()
df.drop_duplicates('col1')#删除了df.duplicated('col1')标记的重复记录
df.drop_duplicates('col1','last')#删除了df.duplicated('col1','last')标记的重复记录
df1.drop_duplicates(['col1','col2'])#删除了df.duplicated(['col1','col2'])标记的重复记录
df.drop_duplicates('col1',keep='last',inplace=True)#inplace=True表示在原DataFrame上执行删除操作
df.drop_duplicates('col1',keep='last',inplace=False)#inplace=False返回一个副本
#删除Series重复记录例子
#drop_duplicates(self, keep='first', inplace=False)
s.drop_duplicates()
参考:
https://blog.csdn.net/u010665216/article/details/78559091
https://blog.csdn.net/kancy110/article/details/70142728
pandas drop_duplicates的更多相关文章
- 学习笔记之pandas
Python Data Analysis Library — pandas: Python Data Analysis Library https://pandas.pydata.org/ panda ...
- 我的Python分析成长之路11
数据预处理 如何对数据进行预处理,提高数据质量,是数据分析中重要的问题. 1.数据合并 堆叠合并数据,堆叠就是简单地把两个表拼在一起,也被称为轴向链接,绑定或连接.依照轴的方向,数据堆叠可分为横向堆叠 ...
- pandas使用drop_duplicates去除DataFrame重复项
DataFrame中存在重复的行或者几行中某几列的值重复,这时候需要去掉重复行,示例如下: data.drop_duplicates(subset=['A','B'],keep='first',inp ...
- pandas包 —— drop()、sort_values()、drop_duplicates()
一.drop() 函数 当你要删除某一行或者某一列时,用drop函数,它不改变原有的df中的数据,而是返回另一个dataframe来存放删除后的数据. 1.命令: df.drop() 删除行:df.d ...
- Lesson11——Pandas去重函数:drop_duplicates()
pandas目录 "去重"通过字面意思不难理解,就是删除重复的数据.在一个数据集中,找出重复的数据删并将其删除,最终只保存一个唯一存在的数据项,这就是数据去重的整个过程.删除重复数 ...
- pandas常用操作详解——pandas的去重操作df.duplicated()与df.drop_duplicates()
df.duplicated() 参数详解: subset:检测重复的数据范围.默认为数据集的所有列,可指定特定数据列: keep: 标记哪个重复数据,默认为'first'.1.'first':标记重复 ...
- pandas.DataFrame.drop_duplicates 用法说明
DataFrame.drop_duplicates(subset=None, keep='first', inplace=False) subset考虑重复发生在哪一列,默认考虑所有列,就是在任何一列 ...
- 【Python实战】Pandas:让你像写SQL一样做数据分析(二)
1. 引言 前一篇介绍了Pandas实现简单的SQL操作,本篇中将主要介绍一些相对复杂一点的操作.为了方便后面实操,先给出一份简化版的设备统计数据: 0 android NLL 387546520 2 ...
- 【Python实战】Pandas:让你像写SQL一样做数据分析(一)
1. 引言 Pandas是一个开源的Python数据分析库.Pandas把结构化数据分为了三类: Series,1维序列,可视作为没有column名的.只有一个column的DataFrame: Da ...
随机推荐
- Problem A: 自定义函数strcomp(),实现两个字符串的比较
#include<stdio.h> int strcmp(char *str1,char *str2) { if(str1!=NULL&&str2!=NULL) { whi ...
- Android测试之Keycode
问题: 昨天做测试Case,发现一个网游APK运行界面,uiautomator无法捕捉获取. 因而输入的时候只得运用(dut.onclick(int a, int y))坐标点击的方法来输入用户名和密 ...
- mysq-binlog
Auth: JinDate: 2014-04-23参考: http://dev.mysql.com/doc/refman/5.1/en/replication-options-binary-log.h ...
- System.Object 基类
System.Object在.Net中是所有类型的基类,任何类型都直接或间接地继承自System.Object.没有指定基类的类型都默认继承于System.Object. 基类特性 正由于所有的类型都 ...
- EF 通用数据层类
EF 通用数据层父类方法小结 转载:http://www.cnblogs.com/yq-Hua/p/4165344.html MSSql 数据库 数据层 父类 增删改查: using System; ...
- ConCurrent并发包 - Lock详解(转)
synchronized的缺陷 我们知道,可以利用synchronized关键字来实现共享资源的互斥访问.Java 5在java.util.concurrent.locks包下提供了另一种来实现线 ...
- iOS开发利器-CocoaPods安装和使用教程
新博客http://www.liuchendi.com 开发iOS项目时肯定会用到许多第三方项目,比如说:ASIHttprequest,JSONKit等等,一些类库可能又关联着其他类库,如果超过一定的 ...
- Struct2_使用Ajax调用Action方法并返回值
一.Login.jsp 1.<head>引入jquery: <script type="text/javascript" src="http://aja ...
- WinCE6.0 2012年补丁下载地址
Windows CE6.0 2012年补丁包WinCEPB60-121231-Product-Update-Rollup-Armv4I.msi下载地址:http://www.microsoft.com ...
- ECMAScript 6(ES6)常用语法
一:Let和const (1)Let定义块级作用域的变量,var定义的变量会提升.Let不会提升. 如下.var可以先用,打印是undefined但是let在定义之前是不能用的. 会报错Uncaug ...