在神经网络中,激活函数决定来自给定输入集的节点的输出,其中非线性激活函数允许网络复制复杂的非线性行为。正如绝大多数神经网络借助某种形式的梯度下降进行优化,激活函数需要是可微分(或者至少是几乎完全可微分的)。此外,复杂的激活函数也许产生一些梯度消失或爆炸的问题。因此,神经网络倾向于部署若干个特定的激活函数(identity、sigmoid、ReLU 及其变体)。

下面是 26 个激活函数的图示及其一阶导数,图的右侧是一些与神经网络相关的属性。

1. Step

激活函数 Step 更倾向于理论而不是实际,它模仿了生物神经元要么全有要么全无的属性。它无法应用于神经网络,因为其导数是 0(除了零点导数无定义以外),这意味着基于梯度的优化方法并不可行。

2. Identity

通过激活函数 Identity,节点的输入等于输出。它完美适合于潜在行为是线性(与线性回归相似)的任务。当存在非线性,单独使用该激活函数是不够的,但它依然可以在最终输出节点上作为激活函数用于回归任务。

3. ReLU

修正线性单元(Rectified linear unit,ReLU)是神经网络中最常用的激活函数。它保留了 step 函数的生物学启发(只有输入超出阈值时神经元才激活),不过当输入为正的时候,导数不为零,从而允许基于梯度的学习(尽管在 x=0 的时候,导数是未定义的)。使用这个函数能使计算变得很快,因为无论是函数还是其导数都不包含复杂的数学运算。然而,当输入为负值的时候,ReLU 的学习速度可能会变得很慢,甚至使神经元直接无效,因为此时输入小于零而梯度为零,从而其权重无法得到更新,在剩下的训练过程中会一直保持静默。

4. Sigmoid

Sigmoid 因其在 logistic 回归中的重要地位而被人熟知,值域在 0 到 1 之间。Logistic Sigmoid(或者按通常的叫法,Sigmoid)激活函数给神经网络引进了概率的概念。它的导数是非零的,并且很容易计算(是其初始输出的函数)。然而,在分类任务中,sigmoid 正逐渐被 Tanh 函数取代作为标准的激活函数,因为后者为奇函数(关于原点对称)。

5. Tanh

在分类任务中,双曲正切函数(Tanh)逐渐取代 Sigmoid 函数作为标准的激活函数,其具有很多神经网络所钟爱的特征。它是完全可微分的,反对称,对称中心在原点。为了解决学习缓慢和/或梯度消失问题,可以使用这个函数的更加平缓的变体(log-log、softsign、symmetrical sigmoid 等等)。

6. Leaky ReLU

经典(以及广泛使用的)ReLU 激活函数的变体,带泄露修正线性单元(Leaky ReLU)的输出对负值输入有很小的坡度。由于导数总是不为零,这能减少静默神经元的出现,允许基于梯度的学习(虽然会很慢)。

7. PReLU

参数化修正线性单元(Parameteric Rectified Linear Unit,PReLU)属于 ReLU 修正类激活函数的一员。它和 RReLU 以及 Leaky ReLU 有一些共同点,即为负值输入添加了一个线性项。而最关键的区别是,这个线性项的斜率实际上是在模型训练中学习到的。

8. RReLU

随机带泄露的修正线性单元(Randomized Leaky Rectified Linear Unit,RReLU)也属于 ReLU 修正类激活函数的一员。和 Leaky ReLU 以及 PReLU 很相似,为负值输入添加了一个线性项。而最关键的区别是,这个线性项的斜率在每一个节点上都是随机分配的(通常服从均匀分布)。

9. ELU

指数线性单元(Exponential Linear Unit,ELU)也属于 ReLU 修正类激活函数的一员。和 PReLU 以及 RReLU 类似,为负值输入添加了一个非零输出。和其它修正类激活函数不同的是,它包括一个负指数项,从而防止静默神经元出现,导数收敛为零,从而提高学习效率。

10. SELU

扩展指数线性单元(Scaled Exponential Linear Unit,SELU)是激活函数指数线性单元(ELU)的一个变种。其中λ和α是固定数值(分别为 1.0507 和 1.6726)。这些值背后的推论(零均值/单位方差)构成了自归一化神经网络的基础(SNN)。

11. SReLU

S 型整流线性激活单元(S-shaped Rectified Linear Activation Unit,SReLU)属于以 ReLU 为代表的整流激活函数族。它由三个分段线性函数组成。其中两种函数的斜度,以及函数相交的位置会在模型训练中被学习。

12. Hard Sigmoid

Hard Sigmoid 是 Logistic Sigmoid 激活函数的分段线性近似。它更易计算,这使得学习计算的速度更快,尽管首次派生值为零可能导致静默神经元/过慢的学习速率(详见 ReLU)。

13. Hard Tanh

Hard Tanh 是 Tanh 激活函数的线性分段近似。相较而言,它更易计算,这使得学习计算的速度更快,尽管首次派生值为零可能导致静默神经元/过慢的学习速率(详见 ReLU)。

14. LeCun Tanh

LeCun Tanh(也被称作 Scaled Tanh)是 Tanh 激活函数的扩展版本。它具有以下几个可以改善学习的属性:f(± 1) = ±1;二阶导数在 x=1 最大化;且有效增益接近 1。

15. ArcTan

视觉上类似于双曲正切(Tanh)函数,ArcTan 激活函数更加平坦,这让它比其他双曲线更加清晰。在默认情况下,其输出范围在-π/2 和π/2 之间。其导数趋向于零的速度也更慢,这意味着学习的效率更高。但这也意味着,导数的计算比 Tanh 更加昂贵。

16. Softsign

Softsign 是 Tanh 激活函数的另一个替代选择。就像 Tanh 一样,Softsign 是反对称、去中心、可微分,并返回-1 和 1 之间的值。其更平坦的曲线与更慢的下降导数表明它可以更高效地学习。另一方面,导数的计算比 Tanh 更麻烦。

17. SoftPlus

作为 ReLU 的一个不错的替代选择,SoftPlus 能够返回任何大于 0 的值。与 ReLU 不同,SoftPlus 的导数是连续的、非零的,无处不在,从而防止出现静默神经元。然而,SoftPlus 另一个不同于 ReLU 的地方在于其不对称性,不以零为中心,这兴许会妨碍学习。此外,由于导数常常小于 1,也可能出现梯度消失的问题。

18. Signum

激活函数 Signum(或者简写为 Sign)是二值阶跃激活函数的扩展版本。它的值域为 [-1,1],原点值是 0。尽管缺少阶跃函数的生物动机,Signum 依然是反对称的,这对激活函数来说是一个有利的特征。

19. Bent Identity

激活函数 Bent Identity 是介于 Identity 与 ReLU 之间的一种折衷选择。它允许非线性行为,尽管其非零导数有效提升了学习并克服了与 ReLU 相关的静默神经元的问题。由于其导数可在 1 的任意一侧返回值,因此它可能容易受到梯度爆炸和消失的影响。

20. Symmetrical Sigmoid

Symmetrical Sigmoid 是另一个 Tanh 激活函数的变种(实际上,它相当于输入减半的 Tanh)。和 Tanh 一样,它是反对称的、零中心、可微分的,值域在 -1 到 1 之间。它更平坦的形状和更慢的下降派生表明它可以更有效地进行学习。

21. Log Log

Log Log 激活函数(由上图 f(x) 可知该函数为以 e 为底的嵌套指数函数)的值域为 [0,1],Complementary Log Log 激活函数有潜力替代经典的 Sigmoid 激活函数。该函数饱和地更快,且零点值要高于 0.5。

22. Gaussian

高斯激活函数(Gaussian)并不是径向基函数网络(RBFN)中常用的高斯核函数,高斯激活函数在多层感知机类的模型中并不是很流行。该函数处处可微且为偶函数,但一阶导会很快收敛到零。

23. Absolute

顾名思义,绝对值(Absolute)激活函数返回输入的绝对值。该函数的导数除了零点外处处有定义,且导数的量值处处为 1。这种激活函数一定不会出现梯度爆炸或消失的情况。

24. Sinusoid

如同余弦函数,Sinusoid(或简单正弦函数)激活函数为神经网络引入了周期性。该函数的值域为 [-1,1],且导数处处连续。此外,Sinusoid 激活函数为零点对称的奇函数。

25. Cos

如同正弦函数,余弦激活函数(Cos/Cosine)为神经网络引入了周期性。它的值域为 [-1,1],且导数处处连续。和 Sinusoid 函数不同,余弦函数为不以零点对称的偶函数。

26. Sinc

Sinc 函数(全称是 Cardinal Sine)在信号处理中尤为重要,因为它表征了矩形函数的傅立叶变换(Fourier transform)。作为一种激活函数,它的优势在于处处可微和对称的特性,不过它比较容易产生梯度消失的问题。

原文链接:https://dashee87.github.io/data%20science/deep%20learning/visualising-activation-functions-in-neural-networks/

Deep Learning基础--26种神经网络激活函数可视化的更多相关文章

  1. Deep Learning基础--理解LSTM/RNN中的Attention机制

    导读 目前采用编码器-解码器 (Encode-Decode) 结构的模型非常热门,是因为它在许多领域较其他的传统模型方法都取得了更好的结果.这种结构的模型通常将输入序列编码成一个固定长度的向量表示,对 ...

  2. Deep Learning基础--参数优化方法

    1. 深度学习流程简介 1)一次性设置(One time setup)          -激活函数(Activation functions) - 数据预处理(Data Preprocessing) ...

  3. Neural Networks and Deep Learning学习笔记ch1 - 神经网络

    近期開始看一些深度学习的资料.想学习一下深度学习的基础知识.找到了一个比較好的tutorial,Neural Networks and Deep Learning,认真看完了之后觉得收获还是非常多的. ...

  4. Deep Learning基础--CNN的反向求导及练习

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  5. Deep Learning基础--各个损失函数的总结与比较

    损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好.损失函数是经验 ...

  6. Deep Learning基础--随时间反向传播 (BackPropagation Through Time,BPTT)推导

    1. 随时间反向传播BPTT(BackPropagation Through Time, BPTT) RNN(循环神经网络)是一种具有长时记忆能力的神经网络模型,被广泛用于序列标注问题.一个典型的RN ...

  7. Deep Learning基础--理解LSTM网络

    循环神经网络(RNN) 人们的每次思考并不都是从零开始的.比如说你在阅读这篇文章时,你基于对前面的文字的理解来理解你目前阅读到的文字,而不是每读到一个文字时,都抛弃掉前面的思考,从头开始.你的记忆是有 ...

  8. Coursera Deep Learning笔记 改善深层神经网络:超参数调试 正则化以及梯度相关

    笔记:Andrew Ng's Deeping Learning视频 参考:https://xienaoban.github.io/posts/41302.html 参考:https://blog.cs ...

  9. Coursera Deep Learning笔记 改善深层神经网络:优化算法

    笔记:Andrew Ng's Deeping Learning视频 摘抄:https://xienaoban.github.io/posts/58457.html 本章介绍了优化算法,让神经网络运行的 ...

随机推荐

  1. BZOJ 1996 合唱队(DP)

    考虑从最后的队形开始依次还原最初的队形. 对于当前的队形,要么选最左边的,要么选最右边的. 如果选了左边的,那么下次选择的一定是大于它的.右边的同理. 所以定义dp[mark][l][r]为区间[l, ...

  2. 【bzoj4922】[Lydsy六月月赛]Karp-de-Chant Number 贪心+背包dp

    题目描述 给出 $n$ 个括号序列,从中选出任意个并将它们按照任意顺序连接起来,求以这种方式得到匹配括号序列的最大长度. 输入 第一行包含一个正整数n(1<=n<=300),表示括号序列的 ...

  3. CentOS7 从查看、启动、停止服务说起systemctl

    执行命令“systemctl status 服务名.service”可查看服务的运行状态,其中服务名后的.service 可以省略,这是CenOS7以后采用systemd作为初始化进程后产生的变化. ...

  4. 【题解】CF#960 H-Santa's Gift

    好久没有写过数据结构题目了,果然还是太不自信.实际上就是要求统计一个式子: \(\sum (c[k]*p[k] - C)^{2}\) 拆开,分别统计和与平方和 \(co[k] * \sum p[k]^ ...

  5. 【刷题】BZOJ 3546 [ONTAK2010]Life of the Party

    Description 一个舞会有N个男孩(编号为1..N)和M个女孩(编号为1..M),一对男女能够组成一对跳舞当且仅当他们两个人互相认识. 我们把一种人定义成这个舞会的life:当且仅当如果他(她 ...

  6. [AHOI2009]中国象棋 DP,递推,组合数

    DP,递推,组合数 其实相当于就是一个递推推式子,然后要用到一点组合数的知识 一道很妙的题,因为不能互相攻击,所以任意行列不能有超过两个炮 首先令f[i][j][k]代表前i行,有j列为一个炮,有k列 ...

  7. 容器化RDS|计算存储分离 or 本地存储?

    随着交流机会的增多(集中在金融行业,规模都在各自领域数一数二),发现大家对 Docker + Kubernetes 的接受程度超乎想象, 并极有兴趣将这套架构应用到 RDS 领域.数据库服务的需求可以 ...

  8. Android <Android应用开发实战> 学习总结杂项

    1.系统相册默认保存地址:android.os.Environment.getExternalStorageDirectory().getAbsolutePath() + "/DCIM/Ca ...

  9. BZOJ2243:[SDOI2011]染色——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=2243 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点 ...

  10. Gaby And Addition Gym - 101466A (初学字典树)

    Gaby is a little baby who loves playing with numbers. Recently she has learned how to add 2 numbers ...