Pandas窗口函数
为了处理数字数据,Pandas提供了几个变体,如滚动,展开和指数移动窗口统计的权重。 其中包括总和,均值,中位数,方差,协方差,相关性等。
下来学习如何在DataFrame对象上应用上提及的每种方法。
.rolling()函数
这个函数可以应用于一系列数据。指定window=n参数并在其上应用适当的统计函数。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2020', periods=10),
columns = ['A', 'B', 'C', 'D'])
print (df.rolling(window=3).mean())
执行上面示例代码,得到以下结果 -
A B C D
2020-01-01 NaN NaN NaN NaN
2020-01-02 NaN NaN NaN NaN
2020-01-03 -0.306293 0.214001 -0.076004 -0.200793
2020-01-04 0.236632 -0.437033 0.046111 -0.252062
2020-01-05 0.761818 -0.181635 -0.546929 -0.738482
2020-01-06 1.306498 -0.411834 -0.680948 -0.070285
2020-01-07 0.956877 -0.749315 -0.503484 0.160620
2020-01-08 0.354319 -1.067165 -1.238036 1.051048
2020-01-09 0.262081 -0.898373 -1.059351 0.342291
2020-01-10 0.326801 -0.350519 -1.064437 0.749869
注 - 由于窗口大小为
3(window),前两个元素有空值,第三个元素的值将是n,n-1和n-2元素的平均值。这样也可以应用上面提到的各种函数了。
.expanding()函数
这个函数可以应用于一系列数据。 指定min_periods = n参数并在其上应用适当的统计函数。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2018', periods=10),
columns = ['A', 'B', 'C', 'D'])
print (df.expanding(min_periods=3).mean())
执行上面示例代码得到以下结果 -
A B C D
2018-01-01 NaN NaN NaN NaN
2018-01-02 NaN NaN NaN NaN
2018-01-03 -0.425085 -0.124270 -0.324134 -0.234001
2018-01-04 -0.293824 -0.038188 -0.172855 0.447226
2018-01-05 -0.516146 -0.013441 -0.384935 0.379267
2018-01-06 -0.614905 0.290308 -0.594635 0.414396
2018-01-07 -0.606090 0.121265 -0.604148 0.246296
2018-01-08 -0.597291 0.075374 -0.425182 0.092831
2018-01-09 -0.380505 0.074956 -0.253081 0.146426
2018-01-10 -0.235030 0.018936 -0.259566 0.315200
.ewm()函数
ewm()可应用于系列数据。指定com,span,halflife参数,并在其上应用适当的统计函数。它以指数形式分配权重。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2019', periods=10),
columns = ['A', 'B', 'C', 'D'])
print (df.ewm(com=0.5).mean())
执行上面示例函数,得到以下结果 -
A B C D
2019-01-01 1.047165 0.777385 -1.286948 -0.080564
2019-01-02 0.484093 -0.630998 -0.975172 -0.117832
2019-01-03 0.056189 0.830492 0.116325 1.005547
2019-01-04 -0.363824 1.222173 0.497901 -0.235209
2019-01-05 -0.260685 1.066029 0.391480 1.196190
2019-01-06 0.389649 1.458152 -0.231936 -0.481003
2019-01-07 1.071035 -0.016003 0.387420 -0.170811
2019-01-08 -0.573686 1.052081 1.218439 0.829366
2019-01-09 0.222927 0.556430 0.811838 -0.562096
2019-01-10 0.224624 -1.225446 0.204961 -0.800444
窗口函数主要用于通过平滑曲线来以图形方式查找数据内的趋势。如果日常数据中有很多变化,并且有很多数据点可用,那么采样和绘图就是一种方法,应用窗口计算并在结果上绘制图形是另一种方法。 通过这些方法,可以平滑曲线或趋势。
Pandas窗口函数的更多相关文章
- Pandas教程目录
Pandas数据结构 Pandas系列 Pandas数据帧(DataFrame) Pandas面板(Panel) Pandas基本功能 Pandas描述性统计 Pandas函数应用 Pandas重建索 ...
- Python人工智能学习笔记
Python教程 Python 教程 Python 简介 Python 环境搭建 Python 中文编码 Python 基础语法 Python 变量类型 Python 运算符 Python 条件语句 ...
- pandas处理时间序列(4): 移动窗口函数
六.移动窗口函数 移动窗口和指数加权函数类别如↓: rolling_mean 移动窗口的均值 pandas.rolling_mean(arg, window, min_periods=None, fr ...
- Pandas | 15 窗口函数
为了处理数字数据,Pandas提供了几个变体,如滚动,展开和指数移动窗口统计的权重. 其中包括总和,均值,中位数,方差,协方差,相关性等.本章讨论的是在DataFrame对象上应用这些方法. .rol ...
- Pandas系列(七)-计算工具介绍
内容目录 1. 统计函数 2. 窗口函数 3. 加深加强 数据准备 # 导入相关库 import numpy as np import pandas as pd #Pandas 中包含了非常丰富的计算 ...
- numpy pandas matplotlib
import numpy as np import pandas as pd import matplotlib.pyplot as plt ---------------numpy--------- ...
- Pandas v0.23.4手册汉化
Pandas手册汉化 此页面概述了所有公共pandas对象,函数和方法.pandas.*命名空间中公开的所有类和函数都是公共的. 一些子包是公共的,其中包括pandas.errors, pandas. ...
- pandas时间序列滑窗
时间序列数据统计-滑动窗口 窗口函数 import pandas as pd import numpy as np ser_obj = pd.Series(np.random.randn(1000), ...
- Pandas 计算工具介绍
# 导入相关库 import numpy as np import pandas as pd 统计函数 最常见的计算工具莫过于一些统计函数了.首先构建一个包含了用户年龄与收入的 DataFrame i ...
随机推荐
- 第二课作业——redis常用命令
第二课时作业 静哥 by 2016.2.23~2016.2.22 [作业描述] 1.key string list hash结构中,每个至少完成5个命令,包含插入 修改 删除 查询,list 和h ...
- Duilib 入门级教程 推荐
http://www.cnblogs.com/Alberl/category/520438.html 作者写的不错,图文并茂,适合刚入门.
- php 汉字验证码
代码: captcha.php <?php //实现简单的验证码 //session_start session_start(); //画布 $image = imagecreatetrueco ...
- Hidden String---hdu5311(字符串处理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5311 题意:从给出的串 s 中找到3个子串然后把他们连在一起问是否能够成anniversary #in ...
- Python开发【第六章】:面向对象
编程范式 编程是程序员用特定的语法+数据结构+算法组成的代码来告诉计算机如何执行任务的过程,一个程序是程序员为了得到一个任务结果而编写的一组指令的集合,正所谓条条大路通罗马,实现一个任务的方式有很多种 ...
- tornado.web.StaticFileHandler
tornado.web.StaticFileHandler 源代码中的解释 class StaticFileHandler(RequestHandler): """A s ...
- 2017年最有价值的IT认证——From Global Knowledge
- 在docker中制作自己的JDK+tomcat镜像
准备工作:需要Linux kernel 3.8支持 查看linux内核的版本:root@ubuntu-dev:~# cat /proc/version查看linux版本:root@ubuntu-dev ...
- 006-虚拟机中centos7实现nat静态ip上网
1.设置虚拟机网卡VMnet8 2.修改虚拟机参数 (1).点击编辑-->虚拟网络编辑器,如下图设置 (2)nat设置如下[使用默认即可,记住网关.掩码等,非常重要,因为在centos里面要设置 ...
- python学习之路-第四天-模块
模块 sys模块 sys.argv:参数列表,'using_sys.py'是sys.argv[0].'we'是sys.argv[1].'are'是sys.argv[2]以及'arguments'是sy ...