为了处理数字数据,Pandas提供了几个变体,如滚动,展开和指数移动窗口统计的权重。 其中包括总和,均值,中位数,方差,协方差,相关性等。

下来学习如何在DataFrame对象上应用上提及的每种方法。

.rolling()函数

这个函数可以应用于一系列数据。指定window=n参数并在其上应用适当的统计函数。

import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2020', periods=10),
columns = ['A', 'B', 'C', 'D']) print (df.rolling(window=3).mean())
Python

执行上面示例代码,得到以下结果 -

                   A         B         C         D
2020-01-01 NaN NaN NaN NaN
2020-01-02 NaN NaN NaN NaN
2020-01-03 -0.306293 0.214001 -0.076004 -0.200793
2020-01-04 0.236632 -0.437033 0.046111 -0.252062
2020-01-05 0.761818 -0.181635 -0.546929 -0.738482
2020-01-06 1.306498 -0.411834 -0.680948 -0.070285
2020-01-07 0.956877 -0.749315 -0.503484 0.160620
2020-01-08 0.354319 -1.067165 -1.238036 1.051048
2020-01-09 0.262081 -0.898373 -1.059351 0.342291
2020-01-10 0.326801 -0.350519 -1.064437 0.749869
Shell

注 - 由于窗口大小为3(window),前两个元素有空值,第三个元素的值将是nn-1n-2元素的平均值。这样也可以应用上面提到的各种函数了。

.expanding()函数

这个函数可以应用于一系列数据。 指定min_periods = n参数并在其上应用适当的统计函数。

import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2018', periods=10),
columns = ['A', 'B', 'C', 'D'])
print (df.expanding(min_periods=3).mean())
Python

执行上面示例代码得到以下结果 -

                   A         B         C         D
2018-01-01 NaN NaN NaN NaN
2018-01-02 NaN NaN NaN NaN
2018-01-03 -0.425085 -0.124270 -0.324134 -0.234001
2018-01-04 -0.293824 -0.038188 -0.172855 0.447226
2018-01-05 -0.516146 -0.013441 -0.384935 0.379267
2018-01-06 -0.614905 0.290308 -0.594635 0.414396
2018-01-07 -0.606090 0.121265 -0.604148 0.246296
2018-01-08 -0.597291 0.075374 -0.425182 0.092831
2018-01-09 -0.380505 0.074956 -0.253081 0.146426
2018-01-10 -0.235030 0.018936 -0.259566 0.315200
Shell

.ewm()函数

ewm()可应用于系列数据。指定comspanhalflife参数,并在其上应用适当的统计函数。它以指数形式分配权重。

import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2019', periods=10),
columns = ['A', 'B', 'C', 'D'])
print (df.ewm(com=0.5).mean())
Python

执行上面示例函数,得到以下结果 -

                   A         B         C         D
2019-01-01 1.047165 0.777385 -1.286948 -0.080564
2019-01-02 0.484093 -0.630998 -0.975172 -0.117832
2019-01-03 0.056189 0.830492 0.116325 1.005547
2019-01-04 -0.363824 1.222173 0.497901 -0.235209
2019-01-05 -0.260685 1.066029 0.391480 1.196190
2019-01-06 0.389649 1.458152 -0.231936 -0.481003
2019-01-07 1.071035 -0.016003 0.387420 -0.170811
2019-01-08 -0.573686 1.052081 1.218439 0.829366
2019-01-09 0.222927 0.556430 0.811838 -0.562096
2019-01-10 0.224624 -1.225446 0.204961 -0.800444
Shell

窗口函数主要用于通过平滑曲线来以图形方式查找数据内的趋势。如果日常数据中有很多变化,并且有很多数据点可用,那么采样和绘图就是一种方法,应用窗口计算并在结果上绘制图形是另一种方法。 通过这些方法,可以平滑曲线或趋势。

Pandas窗口函数的更多相关文章

  1. Pandas教程目录

    Pandas数据结构 Pandas系列 Pandas数据帧(DataFrame) Pandas面板(Panel) Pandas基本功能 Pandas描述性统计 Pandas函数应用 Pandas重建索 ...

  2. Python人工智能学习笔记

    Python教程 Python 教程 Python 简介 Python 环境搭建 Python 中文编码 Python 基础语法 Python 变量类型 Python 运算符 Python 条件语句 ...

  3. pandas处理时间序列(4): 移动窗口函数

    六.移动窗口函数 移动窗口和指数加权函数类别如↓: rolling_mean 移动窗口的均值 pandas.rolling_mean(arg, window, min_periods=None, fr ...

  4. Pandas | 15 窗口函数

    为了处理数字数据,Pandas提供了几个变体,如滚动,展开和指数移动窗口统计的权重. 其中包括总和,均值,中位数,方差,协方差,相关性等.本章讨论的是在DataFrame对象上应用这些方法. .rol ...

  5. Pandas系列(七)-计算工具介绍

    内容目录 1. 统计函数 2. 窗口函数 3. 加深加强 数据准备 # 导入相关库 import numpy as np import pandas as pd #Pandas 中包含了非常丰富的计算 ...

  6. numpy pandas matplotlib

    import numpy as np import pandas as pd import matplotlib.pyplot as plt ---------------numpy--------- ...

  7. Pandas v0.23.4手册汉化

    Pandas手册汉化 此页面概述了所有公共pandas对象,函数和方法.pandas.*命名空间中公开的所有类和函数都是公共的. 一些子包是公共的,其中包括pandas.errors, pandas. ...

  8. pandas时间序列滑窗

    时间序列数据统计-滑动窗口 窗口函数 import pandas as pd import numpy as np ser_obj = pd.Series(np.random.randn(1000), ...

  9. Pandas 计算工具介绍

    # 导入相关库 import numpy as np import pandas as pd 统计函数 最常见的计算工具莫过于一些统计函数了.首先构建一个包含了用户年龄与收入的 DataFrame i ...

随机推荐

  1. 第二课作业——redis常用命令

    第二课时作业 静哥 by 2016.2.23~2016.2.22   [作业描述] 1.key string list hash结构中,每个至少完成5个命令,包含插入 修改 删除 查询,list 和h ...

  2. Duilib 入门级教程 推荐

    http://www.cnblogs.com/Alberl/category/520438.html 作者写的不错,图文并茂,适合刚入门.

  3. php 汉字验证码

    代码: captcha.php <?php //实现简单的验证码 //session_start session_start(); //画布 $image = imagecreatetrueco ...

  4. Hidden String---hdu5311(字符串处理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5311 题意:从给出的串 s 中找到3个子串然后把他们连在一起问是否能够成anniversary #in ...

  5. Python开发【第六章】:面向对象

    编程范式 编程是程序员用特定的语法+数据结构+算法组成的代码来告诉计算机如何执行任务的过程,一个程序是程序员为了得到一个任务结果而编写的一组指令的集合,正所谓条条大路通罗马,实现一个任务的方式有很多种 ...

  6. tornado.web.StaticFileHandler

    tornado.web.StaticFileHandler 源代码中的解释 class StaticFileHandler(RequestHandler): """A s ...

  7. 2017年最有价值的IT认证——From Global Knowledge

  8. 在docker中制作自己的JDK+tomcat镜像

    准备工作:需要Linux kernel 3.8支持 查看linux内核的版本:root@ubuntu-dev:~# cat /proc/version查看linux版本:root@ubuntu-dev ...

  9. 006-虚拟机中centos7实现nat静态ip上网

    1.设置虚拟机网卡VMnet8 2.修改虚拟机参数 (1).点击编辑-->虚拟网络编辑器,如下图设置 (2)nat设置如下[使用默认即可,记住网关.掩码等,非常重要,因为在centos里面要设置 ...

  10. python学习之路-第四天-模块

    模块 sys模块 sys.argv:参数列表,'using_sys.py'是sys.argv[0].'we'是sys.argv[1].'are'是sys.argv[2]以及'arguments'是sy ...