题目描述

在Mars星球上,每个Mars人都随身佩带着一串能量项链。在项链上有N颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为m*r*n(Mars单位),新产生的珠子的头标记为m,尾标记为n。

需要时,Mars人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。

例如:设N=4,4颗珠子的头标记与尾标记依次为(2,3) (3,5) (5,10) (10,2)。我们用记号⊕表示两颗珠子的聚合操作,(j⊕k)表示第j,k两颗珠子聚合后所释放的能量。则第4、1两颗珠子聚合后释放的能量为:

(4⊕1)=10*2*3=60。

这一串项链可以得到最优值的一个聚合顺序所释放的总能量为

((4⊕1)⊕2)⊕3)=10*2*3+10*3*5+10*5*10=710。

输入输出格式

输入格式:

输入的第一行是一个正整数N(4≤N≤100),表示项链上珠子的个数。第二行是N个用空格隔开的正整数,所有的数均不超过1000。第i个数为第i颗珠子的头标记(1≤i≤N),当i<N<
span>时,第i颗珠子的尾标记应该等于第i+1颗珠子的头标记。第N颗珠子的尾标记应该等于第1颗珠子的头标记。

至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。

输出格式:

输出只有一行,是一个正整数E(E≤2.1*10^9),为一个最优聚合顺序所释放的总能量。

输入输出样例

输入样例#1:

4
2 3 5 10
输出样例#1:

710

说明

NOIP 2006 提高组 第一题

这题其实不难,

然而我sb的被这道题绊了一下午,最后发现 calc(计算)写错了写成了return m*n*r,实为m*y*r,//自己弱没办法orz

不开心。

其实这题和合并傻子挺像

dp[i][j]表示区间i到j的最优解

#include<cstdio>

const int N=;
int ball[N*]; int n; int max(int x,int y)
{
if(x>y)return x;
else return y;
} int calc(int m,int r,int y)
{
return m*y*r;
} int dp[N*][N*]; int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&ball[i]);
ball[n+i]=ball[i];
} int ans=;
for(int i=;i<n;i++)
{
for(int j=;j<*n-i;j++)
{
int k=j+i;
for(int q=j;q<k;q++)
{
// 从i到j的最大能量=max(当前能量,从i到q的最大能量+从q+1到k的最大能量还要加上这两颗珠子合并所释放的能量
dp[j][k]=max(dp[j][k],dp[j][q]+dp[q+][k]+calc(ball[j],ball[q+],ball[k+]));
}
ans=max(dp[j][k],ans);
}
}
printf("%d\n",ans); return ;
}

NOIP 2006 提高组 t1 能量项链的更多相关文章

  1. 【NOIP2006提高组】能量项链

    说好的好好写人话的题解 嗯很多题解都说过这是一个石子合并的模型它也确实就是一个石子合并的模型.然而就算这样我也不会写最后仍然写了个记忆化搜索 首先我们不论环状,就直接一条链型,当只剩下两个珠子的时候, ...

  2. 金明的预算方案 NOIP 2006 提高组

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:"你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱 ...

  3. NOIP 2014 提高组 题解

    NOIP 2014 提高组 题解 No 1. 生活大爆炸版石头剪刀布 http://www.luogu.org/problem/show?pid=1328 这是道大水题,我都在想怎么会有人错了,没算法 ...

  4. NOIP 2008提高组第三题题解by rLq

    啊啊啊啊啊啊今天已经星期三了吗 那么,来一波题解吧 本题地址http://www.luogu.org/problem/show?pid=1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们 ...

  5. [NOIp 1998 提高组]Probelm 2 连接多位数【2011百度实习生笔试题】

    /*====================================================================== [NOIp 1998 提高组]Probelm 2 连接 ...

  6. NOIP 2001 提高组 题解

    NOIP 2001 提高组 题解 No 1. 一元三次方程求解 https://vijos.org/p/1116 看见有人认真推导了求解公式,然后猥琐暴力过的同学们在一边偷笑~~~ 数据小 暴力枚举即 ...

  7. 最优贸易 NOIP 2009 提高组 第三题

    题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...

  8. JZOJ2020年8月11日提高组T1 密码

    JZOJ2020年8月11日提高组T1 密码 题目 Description 在浩浩茫茫的苍穹深处,住着上帝和他的神仆们,他们闲谈着下界的凡人俗事,对人世间表现的聪明智慧,大加赞赏.今天他们正在观赏大地 ...

  9. 【GDKOI2014】JZOJ2020年8月13日提高组T1 阶乘

    [GDKOI2014]JZOJ2020年8月13日提高组T1 阶乘 题目 Description Input 第一行有一个正整数T,表示测试数据的组数. 接下来的T行,每行输入两个十进制整数n和bas ...

随机推荐

  1. spring 那点事

    Spring核心功能 DI(IOC) 何谓DI(IOC) DI(依赖注入)是spring的核心功能之一. Dependency Injection 和 Inversion of Control 其实就 ...

  2. Codeforces Round #482 (Div. 2) B题

    题目链接:http://codeforces.com/contest/979/problem/B B. Treasure Hunt time limit per test1 second memory ...

  3. FileReader 与canvas结合使用显示图片

    话不多少,直接上代码 function fileChange() { var file = this.files[0]; var imageType = /^image\//; //是否是图片 if ...

  4. 大聊Python----进程和线程

    什么是线程? 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务. ...

  5. bzoj 1050 并查集

    先按边长排序,假设s与t连通,那么我们可以枚举s与t的路径中最短的一条边,通过类似与kruskal的方法找到s与t的路径在当前最小边权情况下尽量小的最大边权,用这个比值更新答案. 特别的,我们对于某一 ...

  6. Eureka Server的高可用

    Eureka Server进行互相注册的方式来实现高可用的部署,所以我们只需要将Eureke Server配置其他可用的serviceUrl就能实现高可用部署 创建application-peer1. ...

  7. Python阶段复习 - part 3 - Python函数

    利用函数打印9*9乘法表 def cheng(num): for i in range(1,num+1): for j in range(1,i+1): print('{0} * {1} = {2}' ...

  8. 终于解决了Linux下运行OCCI程序一直报Error while trying to retrieve text for error ORA-01804错误

    终于解决了Linux下运行OCCI程序一直报Error while trying to retrieve text for error ORA-01804错误 http://blog.csdn.net ...

  9. 调用start()与run()的区别

    1.调用start()方法: 通知“线程规划器”当前线程已经准备就绪,等待调用线程对象的run()方法.这个过程就是让系统安排一个时间来调用Thread中的run()方法,使线程得到运行,启动线程,具 ...

  10. 【LabVIEW技巧】LabVIEW OOP怎么学

    前言 有很多人对LabVIEW OOP存在比较极端的看法,大致分为两类: 1. 绝对否定派认为LabVIEW OOP只不过是LabVIEW为了追求时髦,在面向过程的基础上用簇做了一些特性,实际上完全不 ...